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When Galactic cosmic rays enter the heliosphere they encounter the solar wind with its frozen-in
magnetic field, which modulates the cosmic ray flux in the heliosphere up to rigidities as high as
40 GeV. In this work, we present a new and straightforward extension to the force-field model that
takes into account charge sign dependent modulation due to drifts in the heliospheric magnetic
field. We start by validating our semi-analytical approach via a comparison to a fully numerical
model. Our model nicely reproduces the AMS-02 measurements and we find the strength of
diffusion and drifts to be strongly correlated with the heliospheric tilt angle and magnitude of the
magnetic field. We are able to predict the electron and positron fluxes beyond the range for which
measurements by AMS-02 have been presented.
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1. Introduction

Upon entering the heliosphere, Galactic cosmic rays encounter the magnetised solar wind and
are thus subject to a number of transport processes: advection with the wind, diffusion in the small-
scale turbulent magnetic field, drifts due to variations of the large-scale field and adiabatic energy
losses in the expanding flow. Together, these effects suppress the fluxes of cosmic rays at Earth
compared to the interstellar fluxes. Collectively this process is referred to as solar modulation.
(See Ref. [1] for a review.) It is lore that solar modulation is negligible above rigidities of∼ 10GV,
but with the small statistical and systematic errors of modern experiments this number is likely
higher. AMS-02, for instance, has reported time variations of the proton and Helium fluxes which
must be attributed to solar activity up to rigidities of 40GV [2].

For the modelling of solar modulation, two approaches have been adopted in the literature:
Numerical codes solve the transport equation for models of the heliosphere of varying sophistica-
tion and complexity [3, 4, 5, 6]. Such models have been successfully applied to time-dependent
data, too (e.g. [7]). While such approaches have the potential to reproduce observations elsewhere
in the heliosphere and thus provide a more global picture, the complexity comes at the price of
a large number of in principle unknown parameters. These parameters need to be determined by
fitting the models to various observables. As the input interstellar fluxes depend also on unknown
parameters, running such global fits is prohibitively expensive.

Phenomenological studies of Galactic cosmic ray transport on the other hand oftentimes em-
ploy the classic force-field model of Gleeson and Axford [8]. The force-field model is conceptually
simple and all the complexity of the heliosphere is condensed into only one parameter, which can
be fit very easily. In addition, allowing for this electro-static potential to be time-dependent, some
degree of correlation between solar activity and this parameter can be found. On the downside,
the force-field model assumes a higher degree of symmetry and ignores transport processes that
must be important, i.e. drifts. Most importantly, the force-field model has trouble reproducing the
measured fluxes. One example is crossing of fluxes, e.g. the fluxes of Bartels rotations 2460 and
2476 cross at 4GeV [9]. In the force-field model, fluxes modulated with different potentials differ
at all energies and never cross.

A number of authors have tried to allow for more freedom while maintaining the simplicity
of the force-field model, for instance by making the force-field potential rigidity-dependent [10,
11]. Here, we follow a different approach and present a systematic extension of the conventional
force-field model. We start from the general transport equation in 2D that includes drifts and
then simplify it–under a limited number of assumptions–to a force-field like structure. Our semi-
analytical model allows modulating the fluxes at a very moderate computational cost. In order to
justify our approximations and to check our result, we use our own finite-difference code. Our
model contains two free parameters per time interval which we determine by fitting to the AMS-
02 data. We further investigate temporal correlations with solar wind parameters and replace the
free parameters by a linear model of tilt angle and field strength. Combining the semi-analytical
model with the solar wind correlations allows reproducing the AMS-02 data and predicting electron
and positron fluxes, for example. We have made an example script for the semi-analytical model
available in both Python and C++ at https://git.rwth-aachen.de/kuhlenmarco/effmod-code.
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2. Semi-analytical method

The propagation of cosmic rays in the heliosphere is generally described in terms of a transport
equation,

∂ f
∂ t

+∇ · (CV f −K ·∇ f )+
1

3p2
∂

∂ p

(
p3V ·∇ f

)
= q , (2.1)

where f is the cosmic ray phase space density with momenta p measured in the fixed frame, C is
the Compton-Getting factor, V denotes the solar wind velocity, K is the diffusion tensor, the third
term on the left hand side describes the adiabatic losses in the expanding solar wind and q is a
source term.

We start by assuming a steady state and follow the conventional force-field approach insofar
as we ignore the adiabatic energy losses in the fixed frame [12]. In the absence of sources the
streaming (CV f −K ·∇ f ) is thus divergence-free and its integral over an arbitrary surface must
vanish. After some manipulations (see Ref. [13]) this leads to the partial differential equation for
f̃ = f̃ (r, p)

∂ f̃
∂ r

+
pṼ

3K̃rr

∂ f̃
∂ p

=− ṽgc,r

K̃rr
f̃ , (2.2)

where tildes denote polar angle averages and ṽgc,r is the radial part of the average of the gradient
curvature drift. The boundary condition is f̃ (R, p) = fLIS(p), R being the radius of the heliosphere.
Note that the absorbing the non-trivial polar angle dependencies into the averaged quantities has
significantly reduced the complexity.

We can solve eq. (2.2) using the method of characteristics,

f̃ (r, p)= fLIS(pLIS(r, p))exp
[
−
∫ r

0
dr′

ṽgc,r(r′, pLIS(r′, p))
Krr(r′, pLIS(r′, p)

]
, (2.3)

where pLIS(r, p) is a solution of the initial value problem with pLIS(R, p) = p,

dp
dr

=
pṼ

3K̃rr
. (2.4)

3. Validation

In order to verify the validity of the approximations made in deriving Eqs. (2.3) and (2.4), we
have solved the transport eq. (2.1) directly using our own finite-difference code. The particular he-
liospheric transport model adopted is closely emulating a model that has been successfully applied
to data from the PAMELA experiment [7] with some simplifications.

We assume a radial solar wind between∼ 400kms−1 in the equatorial plane and∼ 800kms−1

in the polar region with the transition depending on the tilt angle α . For the magnetic field we adopt
a simple Parker spiral [14] with a modification in the polar region [15, 16]. The diffusion coefficient
is modeled as a softly broken power law going from a constant at low energies, motivated by
theoretical calculations of the mean free path of electrons [17], to a power law index of 1.55 at
high energies. For simplicity, the diffusion coefficients perpendicular to the magnetic field have the
same energy dependence and are only rescaled by a relative factor f⊥ = 0.02. The drift coefficient
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is slightly modified with respect to the weak scattering case as needed to account for the small
latitudinal gradients observed by Ulysses [18] as shown with numerical simulations [19].

As a first check of our semi-analytical model, we confirm that the adiabatic term always con-
tributes less than 10% to the transport equation. Next, we check whether the fluxes modulated
according to eqs. (2.3) and (2.4) agree with the results from the fully numerical code. For the pa-
rameters of the semi-analytical method (see Sec. 2), we adopt fiducial parametrisations that reflect
those used in the numerical code. The diffusion coefficient is parametrised again as a softly broken
power law in rigidity R (understood to be measured in GV),

K̃rr = K0Ra
(

Rc +Rc
k

1+Rc
k

)(b−a)/c

, (3.1)

with power law indices a = 0 and b = 1.55, c = 3.5 and a break rigidity Rk = 0.28 fixed to values
obtained in previous studies [7]. The radial drift velocity is parametrised as

ṽgc,r = κ0
R

3B0

10R2

1+10R2 . (3.2)

The averaged radial solar wind obtains a momentum dependence due to the non-uniform dis-
tribution of cosmic rays in the heliosphere in the different polarity cycles. Motivated by results of
our numerical simulation it will be modeled as a step function in momentum

Ṽ =V0(1+∆V θ(R−Rb)) . (3.3)

While the rigidity Rb and the height of the step ∆V have to be fitted to data for different products
of charge sign and magnetic field polarity, the normalization V0 is degenerate with K0 and κ0 and
has thus been fixed to 620kms−1.

In Fig. 1 we show the results of fitting our semi-analytical model (eqs. (2.3) and (2.4)) to the
results from the numerical code. The fit agrees with the numerical solution to within less than 10%.
We find significantly better agreement than with the conventional force-field model.

10−4

10−2

100

102

Φ
[G

eV
−

1
sr
−

1
s−

1
m
−

2
]

qA < 0, α = 10◦

local interstellar

conventional force-field model

numerical code

semi-analytical model

10−1 100 101

p [GeV]

−0.4
−0.2

0.0
0.2
0.4

co
d

e−
m

o
d

el
co

d
e

10−4

10−2

100

102

Φ
[G

eV
−

1
sr
−

1
s−

1
m
−

2
]

qA > 0, α = 10◦

local interstellar

conventional force-field model

numerical code

semi-analytical model

10−1 100 101

p [GeV]

−0.4
−0.2

0.0
0.2
0.4

co
d

e−
m

o
d

el
co

d
e

Figure 1: Fit of our two dimensional extension of the force field model to the fully numerical solution of the
transport equation for a tilt angle of α = 10◦, for qA < 0 (left panel) and qA > 0 (right panel). In the lower
panels the relative deviation from the numerical solution is shown.
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4. Application to experimental data

In a first step, we determine for each time bin separately the free parameters that describe
diffusion and drifts, K0 and κ0. The resulting modulated fluxes for one exemplary Bartels rotation
is shown in Fig. 2 and compared to AMS-02 data. We also show the results from the conventional
force-field model. In particular for the case of electrons the agreement with data is much better for
the semi-analytical model than for the force field model.

One possible reason for remaining deviations of the experimental data from the model are
features of the heliosphere on short time scales that were not taken into account such as coronal
mass ejections that have been shown to influence the flux of cosmic rays in the heliosphere.
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Figure 2: Fit of our semi-analytical model (blue line) to AMS-02 data [20] and the conventional force-field
fit (orange line) for Bartels rotation 2433 for electrons (left panel) and positrons (right panel). In both cases
the local interstellar spectrum is taken from Ref. [21]. The lower part of the plots shows the pull distribution
for the fit. For the blue line the step in the solar wind is fixed while for the blue band it is varied between
∆V = 0 and 0.4.

In order to predict modulated fluxes, we need to model the parameters K0 and κ0 as a function
of time. Physically, we would expect them to be (anti-)correlated with solar wind parameters.
For example, K0, which parametrises the strength of diffusion, could be correlated with a proxy
for solar activity, e.g. the tilt angle α while κ0, which parametrises the relative strength of drifts,
could be anti-correlated with the strength of the magnetic field, B. We stress that both the tilt angle
as measured in the solar corona and the field strength as measured by ACE are relatively local
observables and due to the particles spending a finite time in the heliosphere, we would expect the
fitted parameters to be affected only with a certain delay and after averaging over time.

We have therefore looked for linear correlations between the K0 and κ0 fitted to AMS-02 data
and the title angle and magnetic field strength using a moving average of width ∆T , 〈α〉∆T and
〈B〉∆T . We find the largest correlation (Pearson correlation coefficient of ∼ 0.9) between K0 and
〈α〉∆T for widths of 25 and 45 Bartels rotations for electrons and positrons, respectively. For κ0,
we find an anti-correlation (∼ −0.75) for widths of about 5 Bartels rotations. We have noticed
that after the solar maximum κ0 needs to rise faster than the field strength falls. Therefore we also
propose a model that is split at the solar maximum and consists of one linear model before the
polarity change and one linear model with different coefficients after.
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As shown in Fig. 3, the electron fluxes measured by AMS-02 are nicely reproduced for all
energies in both the simple linear model and the two interval linear model. We find that we can
also reproduce the electron fluxes measured by PAMELA [22] that do not overlap with any of
the AMS-02 measurements. In addition we can use this parametrization to predict the electron
spectrum beyond the range AMS-02 data has been published so far.

In Fig. 3 we also show the positron-electron ratio from our model and compare it to measure-
ments by AMS-02 and PAMELA. While the overall trend is reproduced, the modelled positron
ratio falls too sharply around early 2016 in the one interval linear model. This can be traced back
to the fact that the one interval linear model for κ0 does not work as well for positrons as it does
for electrons. In the two interval linear model the AMS-02 data is reproduced well.

5. Conclusion

We have presented a two dimensional semi-analytical model that incorporates charge sign
dependent modulation effects due to gradient curvature drifts in the solar magnetic field. We have
validated our model by comparing to the results of our finite-difference code and found that it
is significantly more accurate than the conventional force field model. Our model has four free
parameters, two of which encode the strength of diffusion and drifts. Two additional parameters
are necessary to capture the momentum dependence of the averaged solar wind (see Sec. 3). We
note that the latter two are only relevant below ∼ 0.3GeV while fits to experimental data, even
from PAMELA, are not very sensitive to this energy range.

It is remarkable that allowing the two free parameters to vary per time interval we can fit the
time-dependent AMS-02 electron and positron fluxes rather accurately. Introducing in addition a
linear model relating these two parameters to solar wind parameters, we can reproduce not only
the AMS-02 measurements, but also the PAMELA electrons fluxes which do not overlap with the
AMS-02 electron fluxes. We can also predict the electron and positron fluxes beyond the range for
which data has been published.

We stress that our method is significantly faster than fully numerical methods and more ac-
curate than the standard force field model. It can thus be applied to large datasets with fine time
binning like the current AMS-02 data.
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