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Thanks to space-borne experiments such as the AMS-02 and PAMELA missions in low-Earth
orbit, along with the Voyager spacecrafts in the interstellar space, a large collection of multi-
channel and time-resolved Galactic cosmic ray (GCR) data has recently become available. Here
we present an improved measured-validated model of the solar modulation effect, i.e., the tempo-
ral evolution of the GCR flux inside the heliosphere caused by the 11-year variability cycle of the
Sun’s magnetic activity. We present our improved modeling of the structure of the heliosphere,
the physical mechanisms of diffusion, drift, and energy losses of GCR particles in the heliosphere.
We present our results for the temporal dependence of the key model parameters and their rela-
tionship with solar activity proxies. We discuss implications for the GCR transport in magnetic
turbulence, and new insights on our understanding of the solar modulation phenomenon.
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Numerical Models for Solar Modulation of GCRs

1. Introduction

The spectrum of Galactic cosmic rays (GCRs) observed near-Earth is significantly different
from the so-called Local Interstellar Spectrum (LIS), i.e., their spectrum beyond the boundaries of
the heliosphere, because GCRs are subjected to several physical mechanisms during their prop-
agation through the interplanetary space. More specifically, charged particles in the heliospheric
plasma can be spatially diffused, magnetically drifted, advected and decelerated by the outflow-
ing solar wind and its embedded magnetic field. The modifications of the GCR intensities and
energy spectra are known to vary with time, in connection with the Sun’s magnetic activity. This
phenomenon is referred to as solar modulation of GCR, and it is observed to change periodically,
following the periodical change in the sunspot number (SSN) observed in the solar corona. The
SSN is a widely used in solar physics, e.g., as proxy for solar activity or characterizing the Solar
Cycle, as well as for studying its correlation with the GCR modulation properties [1, 2].

A thorough understanding of solar modulation is then important, in the physics of GCRs, either
to infer their LIS’s or to investigate the dynamics of charged particles in the heliospheric turbulence.
Understanding the evolution of the GCR radiation is also essential for astronauts and the electronic
components radiation hazard during long-duration missions. Along with the Voyager-1 data beyond
the heliosphere [3], the new precise data from AMS-02 [4, 5] and PAMELA [6, 7] experiments offer
a unique possibility to study the solar modulation over a long period of time.

2. The Numerical Model

The propagation of GCRs in the heliosphere is described by the Parker-Krymsky equation [8]:

∂ f
∂ t

= ∇ · [KS ·∇ f ]− (~Vsw +~VD) ·∇ f +
1
3
(∇ ·~V )

∂ f
∂ (lnR)

(2.1)

The equation describes the time evolution of the GCR phase space density f (t,R), where R = p/Z
is the GCR particle rigidity (momentum/charge ratio),~Vsw is the solar wind speed,~VD is the guiding
center drift speed, and KS is the symmetric part of the GCR diffusion tensor [9, 10]. The GCR flux
J=J(t,R) is related to f by J = R2 f . In this work, the equation is solved in steady-state conditions
(∂/∂ t = 0), using the stochastic approach [11], based an upgraded and customized version of
the code Solarprop [12, 13]. We use a 2D model, with radius r and heliolatitude θ as spatial
coordinates. The heliosphere is regarded as a spherical cavity, placed around the Sun, where the
wind flows radially. We place the termination shock (TS) at rTS = 85 AU from the Sun. Here the
wind drops to subsonic speed. The heliospheric boundary is taken at rHP = 122 AU, the heliopause
(HP), where the wind vanishes and the GCR flux joins its interstellar value. Within this structure,
the Earth lies in the equatorial plane at rE =1 AU. Along with its radial direction, the speed of
the solar wind is known to depend upon latitudinal and solar activity. The latitudinal dependence
appears well pronounced during period of minimum activity (low SSN) while, in contrast, the
wind profile becomes highly symmetric during solar maximum (high SSN). Furthermore, in the
equatorial plane the speed is highly stable with time, so that it is often set to the constant value of
400 km s−1. In our model, we adopt a global parameterization for Vsw(r,θ), as in [14]. Regarding its
influence on the GCR modulation, the wind transports a frozen-in turbulent Heliospheric Magnetic
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Numerical Models for Solar Modulation of GCRs

Field (HMF), wounded up in a rotating spiral structure. Of great importance for GCR modulation
is the Heliospheric Current Sheet (HCS), sketched in Fig. 1 The HCS is a co-rotating magnetic
structure which divides the HMF into two hemispheres of opposite polarity. The angular extension

Figure 1: Left: Sketch of the heliospheric current sheet, the thin surface where magnetic polarity changes
from north to south. The waviness of this surface is related by the tilt angle, shown in the figure. Right:
GCR flux calculations for LIS of GCR protons (solid line) and its uncertainties (gray band). The data are
from Voyager-1 (blue triangles), AMS-02 (red dots) and PAMELA (black dots).

of the HCS is described by the so-called tilt angle α . The tilt angle is the angle between the Sun’s
rotational axis and its main magnetic axis. It sets the level of the HCS waviness, which is time
dependent. The α-angle is constantly monitored by the Wilcox Solar Observatory (WSO) on a
10-day basis [15, 16]. It ranges from a few degrees during solar minimum (flat HCS) to nearly
900 during maximum and reversal (wavy HCS). In particular, magnetic drift of GCRs is important
across the wavy layer of the HCS. More in general, the motion of GCR particles in the HMF
is decomposed in a regular gradient-curvature large-scale motion and a HCS drift motion, both
occurring on the background average HMF, plus an erratic random-walk scattering off the small-
scale HMF turbulence, from which GCR diffusion originates. All these effects can be included
in a diffusion tensor K, made of a symmetric part that describes the diffusion and a asymmetric
part that describes drift: K = KS + KA, with KS

i j = KS
ji and KA

i j = −KA
ji. The elements of the

symmetric tensor that describes the diffusion KS
i j can be derived from kinetic theory, following a

microscopic approach from GCR pitch-angle scattering off the random HMF irregularities. A key
input parameter for the cosmic ray transport is the parallel spatial diffusion coefficient K‖, which is
usually expressed in terms of the mean free path λ‖ along the background HMF: as K‖ = βcλ‖/3,
where β = v/c is the GCR speed. GCRs are also subjected to perpendicular diffusion, with an
associated length λ⊥, that is usually assumed to be proportional to the parallel diffusion length:
λ⊥ = ξ λ‖, with ξ ∼= 0.02 [17]. The scattering of the GCR on the HMF irregularities is maximum
when the GCR Larmor radius rL is of the same order as the spatial scale size of the irregularities λ̂ .
Thus, the scattering for GCR particles with rigidity R will depends upon the HMF power spectrum
around the wave number k, corresponding to the spatial scale ∼ rL(R). The essential dependence
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of λ‖ on the HMF power spectrum can be therefore expressed as:

λ‖ ∼ r2
L
〈B2〉

w(kres)
∼ R2/w(kres) (2.2)

where 〈B2〉 is the mean square value of the background field and w(kres) is the power spectral
density of the HMF fluctuations. The spatial scale of the resonant component of the spectrum is
λ̂ = 2π/kres. From the cyclotron resonance condition, rL∼ λ̂ , particles with rigidity R will resonate
at kres ∼ 1/R. The w(k) follows a power-law w(k) ∝ k−η , where the index η depends on the type
and on the spatial scales of the turbulence energy cascade [18]. Thus, λ‖ depends on the turbulence
spectral index as λ‖ ∼ R2−η . On a wide range of scale, at least three regimes (with different index
η) can be distinguished for the HMF power spectrum [18] that, in turn, will correspond to three
diffusion regimes for GCRs: the 1/ f range at large scales (i.e., small k, high rigidity), the inertial
range at intermediate scales, and sub-ion range at the smallest scales (large k, low rigidity). At
rigidity above few hundreds MVs, relevant to this work, GCRs resonate in the 1/ f and inertial
scale range. Thus, a good parameterization for the rigidity dependence of λ‖ is the double power-
law function, defined by two indices and a critical rigidity value. In this work, we have adopted the
following parametric description for the parallel diffusion coefficient K‖ [14]:

K‖ =
K0

3
β

(
B0

B

)(
R0

R

)a

×
[
(R/R0)

h +(Rk/R0)
h

1+(Rk/R0)h

] b−a
h

(2.3)

where K0 is a constant in units of 1023 cm2s−1, with R0 ≡ 1 GV, B the HMF magnitude and B0 the
local field value (at 1 AU). The parameters a and b are two power indices that set the slope of the
rigidity dependence, respectively, below and above the rigidity Rk. The parameter h determines the
smoothness of the transition between the two regimes. The perpendicular diffusion follows from
λ⊥ = ξ λ‖, with the addition of polar corrections (based on the Ulysses data at high latitudes) made
to λ⊥ and to the HMF model [19, 20]. The parameter set K0,a,b then specifies the diffusion of
GCRs on the HMF turbulence. Because these parameters depend on the properties of the back-
ground plasma, they may be subjected to temporal evolution following the Solar Cycle [21]. To
test the time evolution of these parameters, we use the recent data on GCR protons from AMS-02
and PAMELA [4, 6, 7].

At this point it is important to note that Eq. 2.1 requires the flux at the HP to be specified
as boundary condition, for a given GCR particle species. Determining the GCR LIS requires the
development of dedicated models of Galactic physics processes, e.g., from the distribution of GCR
sources, particle acceleration mechnisms and diffusive propagation in the Galactic turbulence [22].
In the work presented here, the GCR proton LIS relies on improved calculations from recent works
[23, 24, 25]. In these calculations, the proton LIS was tightly constrained with low-energy data
(at ∼ 100 -500 MeV of kinetic energy) collected from Voyager-1 beyond the HP [3] and AMS-
02 precision measurement performed in the high-energy regime ( E & 100 GeV), i.e., where solar
modulation effects become asymptotically negligible [4, 26, 27]. The GCR proton LIS of this work
agrees fairly well with other spectra proposed recently [28, 30, 29, 31, 32, 33]. Our LIS is shown
in Fig. 1, where comparison is made with the data from Voyager-1, AMS-02, and PAMELA.
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3. The parameter extraction

Our model has six free parameters, in principle time-dependent, that have to be determined
using GCR or Solar data at a given epoch t: the tilt angle of the HCS, α(t), the HMF intensity at
Earth’s location B0(t), the HMF polarity A(t), the global normalization factor of the diffusion tensor
K0(t), and two spectral indices of its rigidity dependence, a(t) and b(t), defined at rigidity below
and above the break parameter Rk. In this work we follow the quasi steady-state approach, where
the time-dependence of the problem is described as a continuous series of steady-state solution of
Eq. 2.1. In practice, time-series of data are used to extract a corresponding time-series of best-fit
parameters. For a given epoch defined by the time t, the parameters α(t), B0(t) and A(t) can be
directly determined with Solar observations from WSO. These parameters describe the average
status of the HMF in a given epoch. Since α and B0 are subjected to continuous variations, we
have computed an average value at a given epochs t, performed over a time window [t −∆T, t],
with ∆T = 12 months. The window is chosen so that the average values of α̂ and B̂0 reflect the
average HMF conditions sampled by GCRs when propagating from the heliopause to Earth [31].
In fact, the model assumes a static heliosphere, where its status is frozen during the travel of GCRs
toward Earths.

The remaining parameters K0, a, and b are those describing the properties of GCR diffusion on
the heliospheric plasma. They have been determined using GCR proton measurements from AMS-
02 and PAMELA. In practice, to fit the GCR data, we have built a six-dimensional discrete grid
of the model parameters vector ~q = (α , B0, A, K0, a, b), for about 106 grid nodes, i.e., parameter
configurations. For each configuration, a differential energy spectrum of GCR protons Jm(E,~q)
was calculated. Each calculation consist in the Monte-Carlo simulation of about 6×104 pseudo-
particles, backwardly-propagated from Earth to the HP, and then re-weighted for their LIS, as to
obtain the locally modulated GCR flux. In practice, 2× 103 pseudo-particles were simulated for
each of the 60 energy bins, ranging from 20 MeV to 200 GeV and following a logaritmically
increasing step. Once the proton grid has established, the time-resolved GCR proton data has been
utilized. From the data at a given epoch (time t), the corresponding quantities A, α̂ , and B̂0 are
determined in the first place. Then, for each GCR data set Jd(E, t), a χ2 statistics was computed
for all the modulated fluxes in the model array:

χ
2(~q) = ∑

i

[Jd(Ei, t)− Jm(Ei,~q)]
2

σ2(Ei, t)
(3.1)

the model Jm energy flux at a given energy was computed by interpolated along on the grid, so
that the resulting χ2(~q) function of Eq. 3.1 is a continuous function of the parameters (with the
exception of the polarity parameter A, that takes two values). The errors are given by σ2(Ei, t) =
σ2

d (Ei, t)+σ2
mod(Ei, t), i.e., by the sum in quadrature of two contributions: errors in the experi-

mental measurements, for the i-th energy bin, and theoretical uncertainties in the calculated flux
Jm, modulated, related to LIS and to the Monte-Carlo generation statistics. Physically, this is
due to adiabatic losses, that prevent a large fraction of low energy to reach the Earth. To reduce
fluctuations, a high number of pseudo-particle trajectories has to be simulated. In particular, we
generated about 2× 103 pseudo-particles per energy bin per run, which demanded a considerable
CPU time. The evaluation of the flux fluctuations was done as follows. The ratio between the
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modulated flux and the corresponding LIS Jmod/JLIS, is approximately equal to the ratio∼Nm/NG,
where Nm is the number of pseudo-particles that reach the HP with energy E, and NG is the num-
ber of pseudo-particles generated at the same energy. Since the propagation process is stochastic,
we expect that the relative error of the modulated flux decreases as δJmod/Jmod = 1/

√
Nm with

Nm = (Jmod/JLIS)NG. The resulting errors amount to ∼ 10÷20 % for GCR energy of 20 MeV, and
become constant at the level of ∼ 2% at GCR energy above a few GeVs. The determination of
the remaining GCR diffusion parameters (K0(t), a(t) and b(t)) proceeds as follows. Given a data
set Jd(E, t), for every parameter q = K0(t), a(t) and b(t), the corresponding χ2(q) distribution is
evaluated, its absolute minimum χ2 is found, and the corresponding parameter qbest is then taken as
best-fit. To find the minimum two methods were implemented, both based on a multidimensional
grid interpolation, and the associated systematic errors were accounted for.

4. Results and discussion
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Figure 2: Time series of the best-fit model parameters K0, (top panel) spectral index a (middle), and spectral
index b (bottom). The temporal dependence of the smoothed SSN are shown as dotted line in the top panel,
renormalized in order to fit in the plot. The epoch of HMF polarity inversion Tinv is shown as vertical blue
line; the reversal period as shaded band [34]. Best-fit result obtained with PAMELA (black) and AMS-02
(red) data are shown. Inside the reversal band, the results are shown under both polarities A < 0 and A > 0,
as a smooth transition is expected between the two values. The modeled transition across the reversal is also
displayed, as blue solid line for AMS-02 and magenta for PAMELA.

For each free parameter, our modified least-square minimization procedure returns a time-
series of its best-fit values and their uncertainties. The results of the fitting are summarized in Fig. 2,
showing the diffusion scaling K0 (top panel) and its spectral indices a (middle) and b (bottom). The
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colors represent the data sets used to perform the fits, i.e., time-resolved proton measurements from
AMS-02 (red full dots) and PAMELA (black full squares). It is important to note that the period
covered by our study spans across a significant fraction of Solar Cycle, including the interesting
phase of magnetic reversal, i.e., when the HMF polarity inversion takes place. We indicate by
Tinv the epochs of reversal, occurred between 2012 and 2013, which is shown in the figure by
vertical blue line, along with its uncertainty band [34]. We can consider three relevant epochs: (i)
t � Trev, before HMF reversal and with negative polarity (A <0), (ii) t � Trev, after reversal and
under positive polarity (A >0), (iii) t ∼ Trev during the reversal, when the HMF is disorganized so
that its polarity A is not well defined. In the top panel of Fig. 2, the smoothed SSN is also shown,
as dotted blue line, renormalized as to fit the scale. The SSN is a good proxy for solar activity and
for studying its correlation with GCR modulation properties [2]. From the figure, it can be seen
that the diffusion normalization parameter K0 evolves with time, following a well defined pattern.
As clear from the figure, the change in K0 appears well anti-correlated with the smoothed SSN,
i.e., with solar activity. In particular, GCR diffusion is faster during solar minimum, and slower
during maximum. This behavior is at the basis of the time-dependent modulation phenomenon.
In fact, a change in diffusion produces a higher (lower) intensity during epochs of solar minimum
(maximum) and vice-versa. In the ideal limit of infinitely fast diffusion, the modulation effect
would disappear (e.g., without Sun, or in the limit of high-energy GCRs). During the HMF reversal,
it can also be seen that the best-fit K0 curve has a little discontinuity, following the discontinuity
of the HMF polarity that switches from A = −1 to A = +1, across t = Trev. In practice, magnetic
reversal occurs gradually, across the region of the shaded band. In fact it involves the magnetic flip
of the north/south poles and the ri-organization of the HMF. This process has a duration of about
one year, as suggested by HMF observations [34] and found by AMS-02 data on the e+/e− ratio
evolution [5]. For the diffusion parameter values, one may expect a similar transition occurring
during this phase. In Fig. 2, the best-fit K0-values are shown under both polarities in the reversal
phase. A smooth transition between the two fits is also shown.

Interestingly, we also found that the diffusion spectral indices a and b show clear temporal
dependence. In our work, the index a is related to the power spectrum in the 1/ f range, while b is
related to the inertial range of the turbulent energy cascade of HMF. In both ranges, our parameters
are in agreement with the measured slopes of the HMF power spectrum on Jan-Feb 2007 [18]. In
most of numerical models of solar modulation, these parameters are usually assumed to be time-
independent. Variations in these parameters imply unexpected changes in the HMF turbulence
spectrum. This is also suggested in other recent works [35, 36, 37].
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