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In recent years CubeSats have been revolutionizing research in space, enabling low-budget,
small-scale, and fast-development of projects. The Rocket Experiments for University Students
(REXUS) program provides students from higher education opportunities to perform their scien-
tific and technological experiments on a sounding rocket launching to space.
A compact cosmic-ray detector, build to CubeSat specifications, has been designed to detect light
produced in a scintillating material when cosmic rays pass through. At only 1 dm3 in size and
operating on only 1 Watt, this REXUS payload as part of the Payload for Radiation measurement
and Radio-interferometry in Rockets (PR3), has measured the charged-particle rate going up in
the atmosphere and into space.
Besides providing a chance for students to work on reproducing the historical discoveries of Hess,
Pfotzer, Regener, Van Allen, and others in the last century, it has also been an outreach opportunity
to engage the general public with astroparticle physics. But above all, it is a proof of concept for
compact cosmic-ray detectors in orbit. Where the worldwide network of neutron detectors is able
to monitor the cosmic-ray flux at ground level, and detectors on the ground and in space detect
cosmic rays locally, global near-real-time coverage of cosmic-ray flux above the atmosphere is
only feasible with an ensemble of small and cheap detectors like the one presented here.
Details on the detector design and performance, and the results from the rocket flight will be
presented.
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1. Introduction

On March 11, 2019 the REXUS-25 rocket launched from the Esrange Space Center near
Kiruna, Sweden in the high Arctic. On board was the student project PR3 (Payload for Radi-
ation measurement and Radio-interferometry in Rockets) from two Dutch universities Radboud
University Nijmegen and Eindhoven University of Technology. The flight was nominal, reached
an apogee of 82 km, and the payload landed again safely 15 minutes later.

On board was a prototype compact satellite cosmic-ray detector. The goal was to test the
effectiveness of the consumer-grade hardware and its robustness to the extreme conditions of a
rocket launch and vacuum conditions of space. This launch was a part of the ongoing efforts to
develop a CubeSat cosmic-ray detector for orbital flight.

During it’s ascent it measured the secondary cosmic rays from the extensive air showers of
high-energy cosmic-rays and after leaving a big part of the atmosphere the primaries.

In the following sections the hardware, its performance during the flight will be described, and
the results from the measurements will be presented.

2. A CubeSat Cosmic-Ray Detector

In 1999 the California Polytechnic State University and Stanford University developed a stan-
dard for a small cubic satellite, CubeSat for short, that can be launched in bulk as secondary payload
with a larger project. The small scale of the satellite would enable universities and even student
projects access to space, mostly in low Earth orbit, for a relatively low cost. Small-scale satellites
with a standardized format also allow for fast development of projects with the additional advantage
of a fast innovation cycle.

The small design however also brings limitations. It has to mostly rely on solar panels for
power which at only 1 dm2 facing the Sun at any time provides only little power. A CubeSat
typically has to run on as little as 6 W of which about 1 W is left for the experiment itself [1]. For
this reason our detector has been designed to operate on 0.5−1 W.

The bulk of the detector consists of a plastic scintillator block (NE110) with dimensions
74 × 74 × 50 mm3. Two optical fibers run through the center to two Avalanche Photo Diodes
(APD) mounted at the bottom. Figure 1a shows the detector in its launch configuration. Figure 1b
is a simplified schematic drawing of the detector. The main advantage of APDs over standard pho-
tomultiplier tubes is that by using modern solid state techniques it can be made smaller, requirs less
power (lower voltages), has faster responses (process a detection faster), and it will be less delicate
so that it can handle mechanical shocks that would break PMTs. The maximum sensitivity of the
APDs coincides with the peak of the scintillator emission spectrum (λ = 435 nm), optimizing the
detection efficiency. The APDs are mounted separately to minimize the risk of mechanical shocks
affecting the connection between APDs and optical fibers. From the APDs connector wires run to
the main electronics board. There the signal of the sensors is amplified and compared to a threshold
set as to reject the majority of the (thermal) noise. If both sensors have a signal above threshold
coinciding within a 10 ns time window an event is logged.

The amount of thermal noise increases with both, temperature and APD voltage. The detec-
tion efficiency of real signals increases with temperature and voltage. It is thus a balancing game
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(a) (b)

Figure 1: (a) Picture of the cosmic-day detector during pre-flight checks. Mounted above the
electronics board (blue) are the light-shielded APD sensors and the light-shielded scintillator block.
(b) Schematic drawing of the detector. Light produced in the scintillator is channeled through
optical fibers towards two APD sensors that record a count if they are in coincidence.

between noise reduction and increasing efficiency. Prior to flight rudimentary measurements with
a reference particle detector were performed to optimize this for operation above the noise floor in
a range of temperatures between 20 to 50 degrees Celsius. These resulted in detection efficiency of
around 40% at 25◦C and around 10% at 50◦C. Due to time constrains of the rocket launch window
a detailed efficiency characterization, as was done for an earlier prototype[2], had to be executed
in this simplified form. Measuring the cosmic-ray rate is sufficient for the goals of this flight.

3. The REXUS Program and the PR3 Project

3.1 The REXUS Program

The REXUS project (Rocket EXperiments for University Students) is a project run by the Euro-
pean Space Agency (ESA), the Swedish National Space Board (SNSB), and the German Aerospace
Centre (DLR). The aim of the project is to make space research available for university students.
Each year two sounding rockets are launched from the Esrange Space Centre in northern Sweden,
up to altitudes between 70 and 100 km. The sounding rockets carry experiments designed, build,
and tested by the students.[3]

3.2 The PR3 Project

A joint team of the Eindhoven University of Technology and Radboud University students, de-
veloped the PR3 payload (Payload for Radiation measurement and Radio-interferometry in Rock-
ets [4]) for a REXUS rocket that was launched in March 2019 as part of the REXUS-25 campaign.
This payload consisted of two experiments. One experiment aimed to track the position of the
rocket to sub-cm accuracy using radio-interferometry. The other experiment aimed at measuring
cosmic radiation and consisted of two complementary sub-experiments. CCD and CMOS camera
sensors measured low-energy cosmic rays to study their potential as ultra-compact radiation mon-
itoring equipment for future space-based missions. Secondly, and the focus of this proceeding,
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the scintillator cosmic-ray detector build to CubeSat specifications as a proof-of-concept to evalu-
ate the performance of the hardware for a future CubeSat flight into orbit. It also functioned as a
reference detector for the camera sensors.

3.3 Flight Conditions
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Figure 2: GPS altitude of the rocket versus time from liftoff. The main events during flight are
highlighted. Because of GPS loss of signal the path after apogee is modeled based on previous
flights with similar payload characteristics.

At the moment of launch the weather conditions at ground were favorable showing a tempera-
ture of -9◦C, clear skies, and minimal wind. Inside the rocket the temperature was stable at around
30◦C. Due to the short flight duration and heating from the electronics this temperature remained
essentially stable throughout the flight.

Figure 2 shows the altitude of the rocket as a function of time after launch. The total flight
time was around 15 minutes of which 5 minutes were above 10 km and about 2 minutes above
60 km. An apogee of just above 82 km was reached.

At a height of 21 km, at T+26 s the engine was cut-off. After atmospheric drag became
insignificant a de-spinning maneuver was performed at around T+70 s. After that the rocket is
essentially in a parabolic free-fall rotating freely for about 2-3 minutes until atmospheric drag
builds up again. A drogue chute is deployed to stabilize the rocket followed by the main parachute
deployment at around 3 km from the ground.

The rocket was launched from a latitude of 67◦N where the magnetic field is almost pointing
downward at a declination of roughly 10◦ East and an inclination of around 77◦ downwards.[5]
Because of this also many low-energy cosmic-ray particles are to be expected that are funneled
down along the magnetic field lines.
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4. Results

4.1 Detector Performance

The detector performed nominally during the entirety of the flight. Prior to the flight the
detector passed vibration and vacuum tests. During the flight shock accelerations of up to 60 G
were recorded which did not affect operation or measurements of the detector itself.

The main means of data recording was done via the telemetry stream sent down from the
rocket. It recorded the detected cosmic-ray rate during the flight in 0.8 s intervals. Build-in re-
dundancy prevented loss of data packages. Secondly, data consisting of each detected scintillator
coincidence signal with a nanosecond timestamp, detector voltage settings, and temperature on the
electronics board was also logged to an on-board memory card. However, technical difficulties with
the stability of a connector elsewhere outside our detector resulted in much of this additional data
being corrupted. The following sections thus describe the data recorded via the telemetry stream.

4.2 Cosmic-Ray Rate and Atmospheric Depth
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Figure 3: (a) Measured cosmic-ray rate as a function of GPS altitude (grey) and as a function of
the aforementioned GPS extrapolation after apogee (white). The grey lines illustrate a 1σ Poisson
error around the red line. (b) Cosmic-ray rate as function of atmospheric depth. The atmospheric
depth is taken from GDAS at the time and location of the launch. The GDAS data is coupled via
the GPS altitude to the cosmic-ray rate. It thus also relies on the GPS altitude extrapolation.

The number of secondary particles produced in extensive air showers close to the equator
typically reach a maximum around 15 km; the Pfotzer maximum.[6] At lower altitudes the flux
decreases as absorption and decay thins the showers. At altitudes above the maximum a stable
plateau will be reached where the secondary particles have not yet formed and only the primaries
are detected. The exact position of the Pfotzer maximum depends on the latitude. Near the equator
this lies around 15 km while near the North Pole this lies closer to 20 km. The latitude has another
effect; the magnetic field orientation determines the rigidity cutoff of cosmic rays. Near the poles
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Figure 4: Direction of the rocket on the sky for each time step above 60 km. The colorbar shows the
time from liftoff. The upper hemisphere is the sky above the local horizon. The cardinal directions
determined from camera footage are shown with their uncertainty. The two circles near the poles
represent the direction of the magnetic field.

lower energy primary particles are not deflected away and thus can dominate over the secondary
particles of the Pfotzer maximum during a solar mimimum when the primary cosmic-ray flux is
even higher. See for example [7] for CRAC:CRII modeling of these effects.

Because our measurement were done at a latitude of 67◦ during a solar minimum the expected
particle flux profile should rise to a plateau without a clearly visibly Pfotzer maximum peak. Fig-
ure 3a shows the measured cosmic-ray rate as function of altitude. It is consistent with these
expectation. Also consistent is the altitude of about 20 km where the maximum rate is reached.
Note that part of the GPS altitude had to be extrapolated based on flight trajectories of previous
flights with similar payload characteristics because of a loss of GPS signal by the rocket service
module. The small offset in measured rate at lower altitudes between the ascent and descent phases
is most likely caused by imperfections in the extrapolation.

The cosmic-ray flux is primarily a function of the amount of atmosphere encountered by the
particles and not altitude. We use the Global Data Assimilation System (GDAS) to get the at-
mospheric depth profile for the time and location of the flight. Prior to flight only a rudimentary
measurement of efficiency could be made (see section 2). For this reason a rate is shown instead
of a flux. Fully characterizing the efficiency and detection threshold for different energies will be
work for the future.

4.3 Arrival Directions above the Atmosphere

To determine the nature of the measured cosmic rays the arrival direction of the particles is
reconstructed. Low-energy particles are expected to follow primarily the direction of the magnetic
field while higher energy particles would arrive more uniformly.

At this point we want to stress that this detector was not designed with direction reconstruction
in mind. It is still able to do this because the scintillator block in the detector is not symmetric but
thinner by almost a factor of 2 in one of its three axes. The measured rate versus time seems to show
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Figure 5: Skymaps of the cosmic-ray intensity. (a) Homogeneous sky model with noise as seen by
the detector. (b) Normalized dipole sky model (average of 20 noise iterations).(c) Measured sky
map as seen by the detector. (d) Reconstructed normalized dipole component from data (average
of 20 noise iterations)

hints of a fluctuating pattern at high altitudes larger than expected from Poissonian fluctuations. For
the period of time that the rocket is in parabolic free-fall it rotates around all three principal axes
scanning across the sky (figure 4). There is thus directional information to be extracted if the
arrival directions are indeed non-uniform. The orientation of the rocket is reconstructed using the
gyroscopic data of the yaw, pitch, and roll rates integrated over time and transformed from the
rocket frame to a local sky frame fixed to the ground. The validity of this method was verified
by comparing the reconstructed orientation to on-board video footage of the flight. Using the
orientation of the detector the effective surface area is known in each direction on the sky at any
point in time. This effective surface area is used as arrival direction probability to smear out the
measured cosmic-ray rate over the sky for each time step above 60 km.

Figure 5c shows the number of counts per steradian per second on each point of the sky as
reconstructed from the measurements. The effective area of the scintillator is the same on opposite
sides of the sky because of the detector geometry. For this reason it can’t distinguish top from
bottom, right from left, and front from back resulting in mirror images of parts of the sky. Disen-
tangling a uniform background from a preferred direction is limited here to looking for a simple
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dipole component (looks the same as a single hotspot because of the asymmetric detector geome-
try) modelling particles arriving aligned with the magnetic field. We model what a pure uniform
and pure dipole sky with the same integrated signal as our measurements would look like as seen
by our detector. For these models first a theoretical sky map is generated. Next the path on the
sky from the flight (figure 4) is used to extract the rate that would be measured for the model sky
at those points in the flight. The skymap is then reconstructed in the same way as was done for
the measurements. Figure 5a shows a uniform background with Poisson fluctuations. Figure 5b
shows the reconstructed dipole sky, but because of the reconstruction method part is smeared over
the sky, the skymap is normalized with the average of 20 uniform sky models with noise so that the
deviation from uniform above the noise becomes visible.

To see if such a dipole is present above the noise level we again remove 20 times a uniform
model and look at the average of the residuals (figure 5d). Comparing this to the model dipole
aligned with the magnetic field (figure 5b) shows the dipole component reconstructed from mea-
surements is well-aligned with the modelled dipole within our uncertainty of the magnetic field
direction. Our dipole component (measured) has deviations from the background of 1% compared
to a pure dipole model. The reason for such a small fraction might be the partly the simple model
for the shape of the dipole representing the magnetic field or the fact that our assumption of a ho-
mogeneous background is not sufficient to describe the sky. Also the arrival direction probability
distribution assigned to each time step does not account for detection thresholds and would required
further study. This is beyond the scope of this work that used this skymap reconstruction to verify
the operation of the detector.

5. Conclusion

We report the development of a compact cosmic-ray detector and the operation tested during
an sub-orbital sounding rocket flight. The detector itself performed as expected for the full duration
of the flight and was able to measure the cosmic-ray rate up to 82 km altitude. The altitude-rate
profile is compatible with expectations from simulations. Using the asymmetrical detector shape
a skymap could be reconstructed consistent with a uniform background with a dipole component
aligned close to the direction of the magnetic field supporting the idea of the presence of lower
energy cosmic rays.
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