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The Cosmic Ray Energetics And Mass experiment for the International Space Station (ISS-
CREAM) is a direct cosmic-ray detection experiment deployed on the ISS in August 2017. It
aims to reveal the sources, acceleration processes, and propagation of cosmic rays by observing
individual elemental spectra at energies in the TeV-PeV range. ISS-CREAM consists of mul-
tiple complementary particle detectors. This work utilizes the Silicon Charge Detector (SCD)
to measure cosmic-ray charges from protons to iron nuclei with a resolution of 0.1-0.3e, and
the calorimeter (CAL) to determine the cosmic-ray track and measure its energy by sampling
the shower energy deposit of secondary particles. With more than 1-year of observations, we
analyzed cosmic-ray spectra of various prominent species such as protons, helium, carbon and
oxygen nuclei. We will report preliminary elemental spectra of cosmic rays for energies greater
than about 10 TeV.
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1. Introduction

The origin of cosmic rays and how they propagate are long-standing mysteries. The main
components of the cosmic ray energy spectra have power-law shapes. Cosmic rays with energies
greater than 1014 eV have been detected via ground-based observations of air showers, which are
secondary particle cascades induced by primary cosmic rays in the atmosphere. These measure-
ments have shown that the all-particle spectrum has a feature known as the “knee” corresponding
to a spectral steepening at ∼1015 eV. This could be explained by the acceleration limit of galactic
cosmic rays generated by shock acceleration in supernova remnants.

Ground-based measurements provide a large collecting power, but they cannot unambiguously
identify the primary particle type that initiated the shower because the air shower development
has large fluctuations. Direct measurements with satellite or balloon-borne detectors can more
precisely identify the primary particle type and determine its energy. Precise measurements of the
energy dependence of elemental spectra from ∼1012eV to ∼1015 eV, where the expected rigidity-
dependent supernova acceleration limit could be reflected in a composition change, provide a key
to understanding cosmic-ray acceleration and propagation mechanisms.

The balloon-borne Cosmic Ray Energies And Mass (CREAM) experiment was flown over
Antarctica between 2004 and 2010, obtaining ∼161 days of flight time. The analysis of CREAM
data showed that TeV energy spectra are harder than the lower energy data from previous exper-
iments [1, 2]. A hardening of spectra of various nuclei has also been reported by PAMELA [3],
AMS-02 [4, 5, 6, 7] and CALET [8]. The exact cause of spectral hardening is under investigation,
while there are possible explanations that derive the hardening from acceleration mechanisms or
nearby sources.

The Cosmic Ray Energetics And Mass experiment for the International Space Station (ISS-
CREAM) experiment aims to reveal the origin, acceleration and propagation mechanisms of cosmic
rays with energies up to 1015 eV by direct measurement. It utilizes a CREAM payload installed on
the ISS and obtained more statistics the CREAM balloon experiments. We will report preliminary
elemental spectra of cosmic rays with more than 1 year of ISS-CREAM observation time.

2. ISS-CREAM Experiment

The ISS-CREAM payload was launched on August 14, 2017 and placed on the ISS. Sci-
entific observations started on August 22, 2017. The ISS-CREAM instrument is configured with
complementary charge and energy measurement systems [9]. It consists of a Silicon Charge Detec-
tor (SCD), calorimeter (CAL), Top/Bottom Counting Detectors (TCD/BCD) and Boronated Scin-
tillator Detector (BSD).

The SCD consists of four layers of silicon pixel sensors, placed at the top of the ISS-CREAM
payload [10]. The active area in each layer is 78.2 cm × 73.6 cm and segmented into 1.55 cm
× 1.38 cm pixels to minimize hits of accompanying backscattered particles in the same segment
as the incident particle. Each layer has 2,688 channels and therefore the SCD a total of 10,752
channels. Silicon pixel sensors are fabricated on 525-µm thick wafers with 16 pixels in a 4 × 4
array. Each sensor is attached to a flexible printed circuit board for signal readout inter-connection.
Seven silicon sensors form a ladder, which is a basic electrical unit powered on/off and monitored.
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Various voltage, current and temperature sensors are installed and monitored in each ladder. Ana-
log electronics boards are equipped with the CR1.4 application specific integrated circuit (ASIC)
chips [11]. Each CR1.4 chip has 16 channels, and each channel has a preamplifier followed by
a shaper. When each chip receives a trigger signal, it holds the voltages of the shaped signals at
the trigger time for all 16 channels, and multiplexes the voltages into an output signal. Digital
electronics boards are located off the active area to avoid adding material in the path of charged
particles. They consist of Analog to Digital Converter (ADC) chips, Field Programmable Gate Ar-
ray (FPGA) chips and voltage regulators. Each board carries out digitization of multiplexed analog
signals.

The CAL has same basic design with the calorimeter used in the CREAM experiment [12].
It consists of a carbon target, 20 tungsten layers, and scintillating fiber ribbons. The tungsten and
ribbon components are 50 cm × 50 cm in area and about 10 cm in height. The tungsten layers,
which have 20 radiation lengths in total, are interleaved with ribbon layers oriented alternately in
the x- and y-directions. Each layer consists of 50 fiber ribbons to measure the development of
cosmic-ray showers. The light signal from each ribbon is collected and split into three sub-bundles
with different gains to cover a wide dynamic range, and lead to a hybrid photodiode (HPD) through
a bundle of clear fibers. Output signals of the HPD are sent to an ADC chip located on ASIC boards.

The TCD and BCD each consist of a plastic scintillator and 400 photodiodes. The TCD is
located between the carbon target and the CAL, and the BCD is located below the CAL. The active
areas of the T/BCD are 50 cm × 50 cm and 60 cm × 60 cm, respectively. They provide shower
profiles for electron/proton separation and an additional lower energy threshold trigger for the CAL.
The BSD consists of a 60 cm × 60 cm × 3.8 cm boron-loaded plastic scintillator. It measures the
late-time (∼several µs) scintillation light and neutron activity produced by cosmic-ray induced
showers. The BSD enhances the electron/hadron discrimination power using the fact that hadron-
induced showers generate more late scintillation light and neutrons than those originating from
electrons, compared in the same cosmic ray energy.

The ISS-CREAM trigger for science events are provided by two instruments. The CAL trigger
covers higher energy events and is created when at least six consecutive layer ribbons detect energy
deposits larger than the threshold value, which is ∼ 40 MeV and determined in each ribbon, and
at least one of them shows energy deposit larger than 76 MeV. The T/BCD trigger is created when
one channel in TCD and two channels in BCD show larger energy deposits than threshold values
determined in each channel. The trigger efficiency is studied by calculating the fraction of events
satisfying the trigger condition among all events which traverse the SCD active area and the bottom
of the CAL, using Geant3 Monte-Carlo (MC) simulations. The preliminary value is about 70-
80% for events which have incident energies above ∼4 TeV. Details of the ISS-CREAM MC are
explained elsewhere [13].

3. Analysis

3.1 Event Selection and Tracking

For this analysis, we use ISS-CREAM data recorded from August 22, 2017, through February
12, 2019. The events triggered by CAL and T/BCD are used. Reconstruction of the shower track
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is based on the method used in the CREAM balloon analysis [2, 14]. In each event, the hit position
of the shower axis in each CAL layer is determined using ribbons with the highest energy deposit
and the neighboring two ribbons in the layer. The incident particle track is reconstructed from a
linear fit of the hit positions in the XZ and Y Z planes. We required χ2/nd f values less than 10 for
the tracks. If distances from a hit position to the neighboring layer hit positions are larger than a
threshold value, the position are excluded from the fit as a misidentified position. Figure 1 shows
an example CAL event tracking.

3.2 Charge Determination

To determine the incident particle charge, the reconstructed shower axis from the CAL is ex-
trapolated to the SCD layer. We use the SCD layer 1 for this analysis since the charge change
between layers is under further investigation. Then a fixed pixel area centered on the extrapolated
position is searched to obtain the highest pixel signal. The searching area is optimized to sustain
more than 90% charge identification efficiency in energy bins greater than several TeV and deter-
mined to be 7 × 7 pixels in area, as shown in Figure 2. The highest pixel signal is corrected for the
path length in the sensor calculated from the reconstructed incident direction.

The SCD signal is proportional to the square of the incident charge (Z2) since it is due to the
ionization energy loss. To calculate the incident charge, we use conversion relations from SCD sig-
nals to the charge, determined from following methods. For Z < 5, we adopt SCD beam test data
performed on the ground [10]. The charge distribution using the CAL tracking and the SCD signal
search explained above is shown in Figure 3 (left). For Z ≥ 5, we use another conversion relation
including a correction factor determined from a tracking fit utilizing the hits on the three active
SCD layers for T/BCD trigger events. This is because peak positions of the measured charge distri-
bution calculated using the beam test data has a systematic shift from CREAM balloon results for

Figure 1: An example event of the CAL tracking. The color shows the energy deposit (MeV unit) in each
ribbon. The cross represents hit positions in each CAL layer determined from the method in the text. The
red lines show reconstructed tracks projected onto XZ and Y Z planes. The sum of the energy deposits is
2751 GeV. The incident particle energy is reconstructed as 2008 TeV. Note that the energy calibration is
preliminary. (top) XZ plane. (bottom) Y Z plane.
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Figure 2: (left) An example SCD event. The color corresponds to the ADC value. The X mark is the
extrapolated position of the reconstructed track from the CAL. The orange square indicates the 7 × 7 pixel
search area for the maximum signal. In this example, the maximum signal is the red pixel indicated by the
asterisk. (right) SCD selection efficiency for different search area sizes using proton MC. The red, green,
blue, yellow describe incident energy 103.6 GeV - 103.8 GeV, 103.8 GeV - 104.0 GeV, 104.0 GeV - 104.2 GeV,
104.2 GeV - 104.4 GeV, respectively. With a search area of 7 × 7 pixels, the efficiency is more than 90%. The
effect of SCD noisy and dead pixels, which are about 10% on average, is not included in the calculation.

Z ≳ 5, and it needs higher statistics to clarify the correction factor. We picked up all combinations
of SCD hits between the three layers, and selected events which shows charge consistency within
±1. We also fit the three hits by a linear line and required a χ2/nd f value less than 10. Contami-
nation of background particles are negligible since they are mostly small signals corresponding to
protons or helium nuclei. Then the correction factor of the shift is determined by comparing charge
distribution of selected events with CREAM balloon results. The resulting SCD charge distribution
is shown in Figure 3 (right).

Events with 0.7< Z < 1.7 are selected as protons, while events with 1.7< Z < 2.7 are selected
as helium nuclei. Also, events with (n - 0.5) < Z < (n + 0.5) are selected as charge n for heavier
nuclei. The charge resolutions are estimated to be 0.1-0.3e for the most prominent species, which
are protons, helium, carbon, oxygen, neon, magnesium, silicon and iron nuclei. Noisy SCD chan-
nels identified by their large root-mean-square pedestal variations were excluded from the analysis.
Throughout the analysis data period, ∼10% of the 2688 SCD channels are masked, including dead
and noisy channels.

3.3 Energy Measurement

The CAL is designed to sample the energy deposit from showers initiated by cosmic rays with
energies up to ∼1015 eV. Conversion factors from ADC signals to energy deposits are obtained from
the ratio of the energy of the MC deposited in each ribbon to the ADC signal measured at calibration
beam tests performed on the ground. The tests are using electron and pion beams with energies
from tens of GeV to hundreds of GeV. Energy deposits in CAL ribbons and energy resolution in
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Figure 3: Charge distributions of sampled data. (left) Proton and helium components obtained from the
CAL tracking and SCD signal search. (right) Species for larger charge components obtained from the SCD
tracking.

each incident energy are obtained, and compared with previous beam tests for CREAM balloon
flights. Details of the CAL energy calibration are explained elsewhere [15, 16, 17]. Each ribbon in
the CAL has three energy ranges with different gains. The inter-calibration between the ranges are
carried out with flight data by comparing signals from different ranges of the same ribbon generated
by the same artificial input signal. In this analysis, the low gain range signals are used. The
higher ranges will be used in the next analysis, which can make obtained particle energies larger.
The incident particle energy is determined from the sum of energy deposits in the CAL using the
conversion relation found from MC [13]. Note that the calibration of the ISS-CREAM CAL energy
measurement is preliminary since the channel-by-channel correction is not done completely.

3.4 Spectrum Calculation

The measured spectra need to be corrected for the instrument acceptance and the live time
of the observation. In this analysis, we calculated dN/dE, which is not corrected flux by the
acceptance and the live time, where dN is the number of events in an energy bin, dE is the energy
bin size. The estimation of the acceptance and live time effects are in progress.

4. Results

Figure 4 shows the measured differential spectra with energies larger than 10 TeV for each
element. The spectra are set as an arbitrary unit. The left figure shows elemental particle spectra
for protons and helium nuclei. The maximum energy of the proton flux reaches about 1 PeV.
The spectra follow power-law shapes with indexes close to 2.5-2.7, but data points are fluctuated
more than statistical errors since the analysis is premature. To solve this, we will include spectrum
deconvolution [14] and background subtraction in each charge and energy for the next analysis
step. Various efficiencies will have to be studied to extend the measurements to lower energies.
Since efficiencies are different in each energy and charge, we will include energies less than 10
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Figure 4: Preliminary elemental particle spectra measured with ISS-CREAM. The vertical error bars repre-
sent statistical errors. Since larger energy bins are used at higher energies, we divide the number of events
by the bin width to follow dE = 1 GeV, so the vertical values can be less than unity. (left) Light nuclei. The
red and green represent protons and helium nuclei, respectively. (right) Heavy nuclei in energy per nucleon
unit. The green, blue and yellow represent helium, carbon and oxygen nuclei, respectively.

TeV after careful studies are done. The right figure shows elemental particle spectra for helium,
carbon and oxygen nuclei as functions of energy per nucleon. These spectra also follow power-
law shapes. The relative abundance has no physical significance because necessary corrections
for interactions and propagation have not been applied to these data yet. The carbon might be
enhanced by charge misidentified events from protons and helium nuclei, since the background
subtraction is not completed yet. These effects will also be corrected after spectrum deconvolution
and background studies are done.

5. Summary

We presented the preliminary methods and results of cosmic-ray spectra measured with ISS-
CREAM. The preliminary spectra showed reasonable power-law shapes. Current analysis does
not include the detector acceptance and the observation live time for absolute fluxes. Also, flux
deconvolution and background estimation are necessary for precise determination of the fluxes.
Studies of such effects in each energy and charge are underway, and we plan to complete them and
publish the results soon.
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