
P
o
S
(
I
C
R
C
2
0
1
9
)
1
8
1

P
o
S
(
I
C
R
C
2
0
1
9
)
1
8
1

Performance optimization of air shower simulations
with CORSIKA

Dominik Baack∗ for the CORSIKA 8 collaboration †
Technische Universität Dortmund, Germany
E-mail: dominik.baack@tu-dortmund.de

With the steady increase in accuracy, size and complexity of astroparticle physics experiments the
need for an extensive amount of high precision Monte Carlo simulations is rapidly growing. Con-
trary to the increasing demand is the demise of “Moore’s law” which leads to situations where the
system structure of high-performance computing is fundamentally changing and large amounts
of money are invested in new infrastructure. In the field of astroparticle physics CORSIKA 7 is
currently the most commonly used simulation program, therefore the presented work is focused
on this software. All methods provided are also currently transferred to the new CORSIKA 8
framework which will replace CORSIKA 7 in the near future. Due to various constraints on hard-
ware, geometry and physics no experiment is able to observe the full air shower particle cascade
developing in the atmosphere. The removal of the non-visible phase space of the cascade at an
early stage of the simulation has immense potential to reduce the expense of calculations without
changing the results of the simulation for the experiment. Fast machine learning models allow
the identification and removal of particles from those regions to speed up the simulations. This
works for example for neutrinos by orders of magnitude. First results are shown to demonstrate
this technique.
Furthermore, when showers are simulated with the IACT configuration around 75% of the time is
spent on the Cherenkov photon creation and propagation. We also show results from parallelizing
this part of the simulation on GPUs and CPUs with OpenCL.

36th International Cosmic Ray Conference -ICRC2019-
July 24th - August 1st, 2019
Madison, WI, U.S.A.

∗Speaker.
†for collaboration list see PoS(ICRC2019)1177 or https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika/wikis/ICRC2019-

author-list

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:dominik.baack@tu-dortmund.de

P
o
S
(
I
C
R
C
2
0
1
9
)
1
8
1

P
o
S
(
I
C
R
C
2
0
1
9
)
1
8
1

Corsika optimization Dominik Baack

1. Introduction

With the increasing quality, size and complexity of modern astroparticle experiments, like
CTA, it is possible to observe cosmic rays in even higher detail than today’s experiments. To en-
able the precise analysis of the observed information it is necessary to increase the amount and
quality of simulated data in a similar fashion. This requires new methods to improve physical
correctness, which typically slows down the simulation. In addition, a massive investment in com-
puting time is required to reach the demanded number of simulations.

With even bigger experiments like IceCube-Gen2 [1] or SKA [2] on the horizon the computing
power needed to generate those simulations become the limiting factor for extensive analysis. Even
today the analysis of rarely occurring physical events is significantly hampered due to the difficulty
to generate those in simulations.
The only solution to reach the demanded simulation statistics, besides tailoring the simulation
which can introduce bias or difficult to detect errors, is to speed up the simulation overall. On the
other hand, the gained runtime can be invested in higher quality simulation methods.
The focus is placed on the widely used Monte Carlo Simulation CORSIKA for atmospheric particle
showers. Here, most methods presented in this work were tested in the current release CORSIKA
7 [3] but they will be transferred to the complete rewritten CORSIKA 8 [4]. This new version of
CORSIKA is written in modern C++ and allows an even broader approach for performance im-
provements compared to the old and complex F77 code.

The main optimizations explained in section 2 and 3 can be separated into two different ap-
proaches. The first is a reduction of the number of calculations needed do to machine-learned
experiment specific cuts. The second approach is a more efficient parallelization of the workload
generated during the simulation.

1

P
o
S
(
I
C
R
C
2
0
1
9
)
1
8
1

P
o
S
(
I
C
R
C
2
0
1
9
)
1
8
1

Corsika optimization Dominik Baack

2. Efficent removal of unobservable particles

The core idea behind this optimization is to reduce the necessary amount of calculation dur-
ing the simulation by removing particles that do not contribute to the observable phase space of
the experiment. For Cherenkov telescopes, like the CTA telescope, the observed Cherenkov light
propagated to the ground is displayed in image 1 with preliminary telescope positions and sizes
for the north observatory. It is clearly evident that a large amount of Cherenkov photons are gen-
erated which dos not hit the detector and contribute to the measurement at all. When looking at
individual particle tracks on cascade level, image 2, you see similar results. Only a fraction of
the simulated particles emits experimental observable light. With increasing zenith angle, energy
and distance from the shower core, the effect is even more prominent. This effect is not limited
to Cherenkov radiation but is identifiable for other experiments as well where the size of the ob-
servable area is much smaller than the shower area. Beside the mentioned geometrical constraints,
physical constraints can be found as well.

Figure 1: Cherenkov Photon emission of a sin-
gle 1 TeV gamma-ray shower compared to the
size of CTA.

X [m]

300020001000 0 100020003000
Y [m

]
2000

1000
0
1000

2000

Z
[m

]

4000
6000
8000
10000
12000
14000
16000
18000

Figure 2: Displayed are non electromagnetic
particles of a 1 TeV proton cascade. The
blue lines are particles that possibly contribute
Cherenkov photons to the observation of a sin-
gle 10m telescope positioned at the origin.

2.1 Dynamic Stack

The main working memory inside of CORSIKA 7, used to store intermediate particles, is
called stack. Particles created during interactions will be stored there and iteratively read in the
“last in - first out” order. The dynamic stack [5, 6], originally developed for CORSIKA 7, is a
replacement for this relatively simple storage to create easy access and modifiable interface to the
processed particles. In addition, the calculation order of the cascade can be changed by prioritiz-
ing certain particles. The decorator design pattern implemented with the dynstack interface with
several pre-implemented features can be used to tailor the simulation to specific detectors.

2.2 “Small” size optimizations

2

P
o
S
(
I
C
R
C
2
0
1
9
)
1
8
1

P
o
S
(
I
C
R
C
2
0
1
9
)
1
8
1

Corsika optimization Dominik Baack

0 0
2 1

2

0
1 5

6

Figure 3: Reconstruction of the
contribution parameter in a cascade.
Highlighted is the accumulated factor,
normal the factor of this vertices.

The main optimization potential for experiments
smaller then the shower diameter is the removal of
not observed particles displayed in image 2. To iden-
tify those particles several cascades will be simulated
and completely logged. In case of Cherenkov ex-
periments, this includes Cherenkov photons hitting a
sphere around the telescope. The widely used IACT
[7] extension for CORSIKA 7 can be used to de-
tect those photons. For even greater performance
improvement, the experiment specific acceptance must
be applied to the stored data and marked accord-
ingly.

With this experiment specific data, it is possible to re-
construct the cascade and annotate each particle with its
contribution to the experiment. The most important factor
here is to add the contribution of every child particle to its
parent particle displayed in image 3. This guarantees that

important particles further down in the cascade will not be eliminated by accidentally removing
invisible parent particles.

Applying basic machine learning methods, e.g. decision tree, on the cascade data shows that
even a single parameter allow the reduction of nearly 40% of the particles without significant loss
of observable information. The strongest separation parameter for small Cherenkov experiments
is the angle between the momentum and the direction to the experiment center. This is displayed
in figure 4. When more complex methods, like random forests, are used a bigger fraction of the
shower can safely be removed. The disadvantage is the slightly longer execution time for each
particle. Depending on the experiment a reasonable compromise must be found.

2.3 “Physics” optimization

For some experiments or special analysis, only specific showers are of interest. Those can have
rare physical requirements, like a very high energetic muon hitting the detector. If the necessary
conditions can be roughly evaluated during runtime it is possible to stop the cascade simulation
that does not meet those. With the sorting modules integrated into dynstack [5, 6] for CORSIKA
the program can be set up to prioritize those particles that still can create the wanted effects and
delay all other particles until the criteria are met. The additional memory required of this method
does grow with energy, but with far less than 1 kB per particle, even the intermediate level of PeV
shower are easily stored on current infrastructure.

3

P
o
S
(
I
C
R
C
2
0
1
9
)
1
8
1

P
o
S
(
I
C
R
C
2
0
1
9
)
1
8
1

Corsika optimization Dominik Baack

0 20 40 60 80 100 120 140 160
Angle [°]

100

101

102

103

104

Pa

rti
cle

Not measurable
Measurable

Figure 4: Differentiation between non-/observable particles based on its flight angle to the telescope direc-
tion.

4

P
o
S
(
I
C
R
C
2
0
1
9
)
1
8
1

P
o
S
(
I
C
R
C
2
0
1
9
)
1
8
1

Corsika optimization Dominik Baack

3. Acceleration of CORSIKA via parallel execution

Besides reducing the calculation time through workload reduction (see chapter 2) it is possible
to distribute the workload efficient over multiple computing cores. For modern CPUs the perfor-
mance improvements per generation of individual cores is declining as seen in figure 5. To utilize
future hardware to its fullest potential it becomes necessary to execute several simulation instances
in parallel.
The current method of parallel execution that is used for several different software frameworks,

1970 1980 1990 2000 2010 2020

100

101

102

103

104

105

106

107 Number of Logical Cores
Frequency (MHz)
Single-Thread Performance
Transistory (103)
Power (W)

Figure 5: Performance developement of CPU’s in recent years [8].

including CORSIKA 7, is through multiple executions of the same program. For CORSIKA 7 this
method of parallelization computes its results without sharing basic information, this includes the
OpenMPI [9] parallelization which only shares top-level data. For the “old” CORSIKA this ap-
proach worked for several years, because of its relative low memory footprint and a sufficient core
to memory (RAM) ratio in most computing clusters.

For the new generation of CORSIKA several new functions and optimizations are added to the
base program which, when chosen, require a bigger memory footprint than ever before. In addition,
the number of cores is rapidly increasing while memory is not. This effect is backed by several
additional technical innovations like hyperthreading and alternative CPU architectures like ARM.
Both technics show promising results for the future. In addition, separate acceleration hardware
such as graphic cards allow improvements over a factor of 102 for selected parts such as Cherenkov
emission.

5

P
o
S
(
I
C
R
C
2
0
1
9
)
1
8
1

P
o
S
(
I
C
R
C
2
0
1
9
)
1
8
1

Corsika optimization Dominik Baack

3.1 CPU Parallelization

Most of the memory resource needed in CORSIKA are static tables with interpolation values
or other constant data. The excessive memory use from multiple processes can, therefore, be
avoided if these tables are shared between parallel running calculations. This can be enabled by
using multiple threads which allow an easy approach to resource sharing. The stack described in
the last chapter 2.1 can be used as a synchronization layer between multiple independently running
threads.

The interaction models used in CORSIKA 8 are currently still mostly written in Fortran with
data exchange over common blocks. Those need to be modified, for example via an automatic
python script, to call thread-safe memory routines. An alternative method is the use of OpenMP
pragmas in Fortran which only introduce slight modifications.

3.2 GPU Parallelization

1

2

3

4

Figure 6: Overview of calculation order
of Cherenkov photons on the GPU.

Parallelization on GPUs is only feasible for ultra-
high parallel computing tasks which rely mostly
on arithmetic calculations. In the case of COR-
SIKA, this is mostly the handling of radio and
Cherenkov emission from cascade particles. In case
of Cherenkov light ∼ 106 TeV−1 (settings for the
MAGIC-Telescope [10]) independent photons must
be handled and propagated to the experiment. To
minimize the workload on the CPU and transfer
time to the GPU, the best way is to transfer in-
dividual particle tracks to the GPU and not pre-
generated photons. Further, it is recommended to
avoid idle timeframes on the GPU by collecting
particle tracks of several parallel running (section
3.1) shower simulations on a single GPU. In image
6 an outline over the current processing order on
the GPU is given. The platform and hardware in-
dependent programming language OpenCL [11] is
used to run the Cherenkov code on a wide variety of
systems, including CPU, GPU (AMD TM& NVidia
R©) and FPGAs.

The method of distributing computation task in a parallel setup is essential to gain the highest
performance. The steps taken here are shown in Figure 6:

1. (1x work-group/block per track) The track is split into several smaller straight tracks

2. (1x work-group/block per track) Random numbers are drawn and photons along the track
segments are generated including a direction, and afterward stored in GPU memory. Atmo-
spheric absorption is applied during the generation.

6

P
o
S
(
I
C
R
C
2
0
1
9
)
1
8
1

P
o
S
(
I
C
R
C
2
0
1
9
)
1
8
1

Corsika optimization Dominik Baack

3. (1x work-item/kernel per photon) The photons are projected onto the ground for a very fast
first check. If it is not possible to hit the detector the particle is discarded.

4. (1x work-item/kernel per photon) Surviving photons are propagated correctly to ground-
level. Interpolation tables inside the texture memory provide fast access to atmospheric data.

4. Conclusion

For the most efficient production of cosmic ray simulations with CORSIKA a broad spectrum of
different optimization techniques is available. With the specialization of the general simulation
software to specific experiments or physical problems, it is possible to reduce overall calculation
time significantly. In addition, the use of heterogeneous computing infrastructure with the upcom-
ing parallelization options can result in more cost-effective simulation.

Acknowledgments

Part of this work is supported by Deutsche Forschungsgemeinschaft (DFG) within the Collab-
orative Research Center SFB 876 4 "Providing Information by Resource-Constrained Analysis",
project C3.

References

[1] M. Aartsen, M. Ackermann, J. Adams, J. Aguilar, M. Ahlers, M. Ahrens, D. Altmann, T. Anderson,
G. Anton, C. Arguelles, et al., arXiv preprint arXiv:1412.5106 (2014).

[2] P. Dewdney, P. Hall, R. Schillizzi, and J. Lazio, Proceedings of the Institute of Electrical and
Electronics Engineers IEEE 97 (2009) 1482–1496.

[3] D. Heck, G. Schatz, J. Knapp, T. Thouw, and J. Capdevielle, Corsika: a monte carlo code to simulate
extensive air showers, tech. rep., 1998.

[4] M. Reininghaus and R. Ulrich, Corsika 8–towards a modern framework for the simulation of
extensive air showers, in EPJ Web of Conferences, vol. 210, p. 02011, EDP Sciences, 2019.

[5] D. Baack, Data Reduction for CORSIKA, Tech. Rep. 2, E5b, Faculty Physic, TU Dortmund, 06, 2016.

[6] D. Baack, “Cor-PlusPlus.”

[7] K. Bernlöhr, Astroparticle Physics 30 (2008) 149–158.

[8] K. Rupp, “42 years of microprocessor Trend Data.” License: Creative Commons 4.

[9] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay, P. Kambadur,
B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, Open MPI:
Goals, concept, and design of a next generation MPI implementation, in Proceedings, 11th European
PVM/MPI Users’ Group Meeting, (Budapest, Hungary), pp. 97–104, September, 2004.

[10] J. Aleksić, S. Ansoldi, L. Antonelli, P. Antoranz, A. Babic, P. Bangale, M. Barceló, J. Barrio, J. B.
González, W. Bednarek, et al., Astroparticle Physics 72 (2016) 76–94.

[11] J. E. Stone, D. Gohara, and G. Shi, Computing in science & engineering 12 (2010) 66.

7

https://sfb876.tu-dortmund.de/PublicPublicationFiles/baack_2016a.pdf
https://github.com/tudo-astroparticlephysics/Cor-PlusPlus
https://github.com/karlrupp/microprocessor-trend-data
https://creativecommons.org/licenses/by/4.0/legalcode

