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TUS (Tracking Ultraviolet Set-up) is the world’s first orbital detector of ultra-high-energy cosmic
rays (UHECRs). It was launched into orbit on April 28, 2016, as a part of the scientific payload of
the Lomonosov satellite. The main aim of the mission was to test the technique of measuring the
ultraviolet fluorescence and Cherenkov radiation of extensive air showers generated by primary
cosmic rays with energies above ∼ 100 EeV in the nocturnal atmosphere of the Earth from space.
During its operation period, TUS registered almost 80,000 events, with a few of them satisfying
the criteria expected for UHECR candidate events. Here we discuss the phenomenology and
possible interpretations of an outstanding event registered in perfect observational conditions on
October 3, 2016.
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1. Introduction

Measurements of the energy spectrum, nuclear composition and arrival directions of ultra-
high-energy cosmic rays (UHECRs, E & 50 EeV1) are an important part of modern astrophysics
and particle physics [1] but the ongoing studies are limited by the very low flux of the particles.
The primary goal of TUS, the world’s first orbital detector of UHECRs [2, 3], was to expand the
experimental studies of UHECRs to space following an idea by Benson and Linsley [4]. The main
point is that fluorescence and Cherenkov ultraviolet (UV) radiation of an extensive air shower
(EAS) generated by an UHECR in the nocturnal atmosphere of the Earth can be detected from a
satellite similar to the way it is observed from the ground with fluorescence telescopes but with a
much larger and uniform exposure of the whole celestial sphere.

The TUS instrument on board the Lomonosov satellite was launched into orbit from the newly
built Vostochny Cosmodrome (Russia) on April 28, 2016, and successfully operated till late 2017.
Several preliminary UHECR candidates have been selected in the mission data [5] and are being
analyzed. In the present work, we focus on an event registered on October 3, 2016 (TUS161003 for
short), which is remarkable due to the shape and kinematics of the signal closely resembling what is
expected from an EAS. We discuss the event and related puzzles and comment on its astrophysical
and anthropogenic aspects.

2. The TUS detector

TUS was a UV telescope looking downward into the atmosphere in the nadir direction. Its de-
sign was determined by the task of registering fluorescence and backscattered (reflected) Cherenkov
radiation of EASs in the near-UV band. The two main parts of the instrument were a modular
Fresnel mirror-concentrator and 256 photomultiplier tubes (PMTs) arranged in a 16×16-channels
photodetector located in the focal plane of the mirror.

The TUS mirror was composed of 7 hexagonal segments made of a carbon plastic with the
total area of Smirr = 1.93 m2 and the focal distance of 1500 mm. The overall field of view (FOV)
of the detector was 9◦×9◦.

The photodetector was built of 16 modules, each consisting of 16 channels. Each channel
(pixel) was a Hamamatsu R1463 PMT with the quantum efficiency of approximately 20% in the
wavelength band 300–400 nm. A multi-alcali cathode was covered by a UV glass filter of the UFS1
type and a reflective light guide with a square entrance of 15 mm size located in the focal plane of
the mirror. The angular resolution (the FOV of one channel) was 10 mrad, which corresponds to
a spatial domain of about 5 km×5 km at the sea level from a 500 km orbit height. Thus, the full
instantaneous area observed by TUS was approximately 80 km×80 km = 6400 km2.

TUS employed a two-level trigger [6], which was able to select events in terms of both the
intensity of the signal (a threshold trigger) and the specific space-time pattern (an adjacency trig-
ger). Data of all 256 channels for 256 consecutive time steps with a time resolution of 0.8 µs were
recorded in case conditions of both triggers were satisfied, thus forming a TUS event.2

11 EeV = 1018 eV
2TUS also performed observations with sampling times of 25.6 µs, 0.4 ms and 6.6 ms for registering slower UV

phenomena.
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The Lomonosov satellite had a sun-synchronous orbit with an inclination of 97.3◦, a period
of ≈ 94 min, and a height of about 470–500 km above the sea level. A more detailed description
of the TUS detector can be found in [2]. Preliminary results of the TUS mission were presented
in [7, 3, 8].

3. The TUS161003 event

The TUS161003 event was registered on October 3, 2016, at 05:48:59 UTC, 00:48:59 local
time. The center of the FOV of TUS at the moment of registration was located at 44.08◦N, 92.71◦W
above Minnesota, USA. The orbit height was about 481 km above the sea level.

Position of the FOV of TUS on the ground at the moment of registration of the event is shown
in the left panel of Fig. 1. The cyan arrow shows the approximate direction of movement of the
signal. There are no big cities, airports or other obvious potential sources of the signal below the
hit channels.

Figure 1: Left panel: the FOV of TUS indicated by green lines for the TUS161003 event on a Google Earth4

map with the NASA data on night Earth. Right panel: MODIS data on the cloud coverage near the time and
region of registration of the event. The star shows the location of the event.

A detailed analysis of conditions of observation was performed to exclude possible atmo-
spheric sources that could imitate an EAS signal. Thunderstorm activity was studied in the region
using the Vaisala Global Lightning Dataset GLD360, a ground-based lightning location network
with a relatively high detection efficiency [9, 10]. No lightning strikes were registered within
930 km and during ±10 s from the event. This witnesses in favour of a non-thunderstorm origin of
the signal.

A study of the cloud coverage was performed using the MODIS5 satellite images and infor-
mation from the Modern-Era Retrospective analysis for Research and Applications-2 (MERRA2)
project.6 The cloud coverage in the region of the event provided by MODIS is shown in the right

4https://www.google.com/earth/
5https://modis.gsfc.nasa.gov/
6https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

2



P
o
S
(
I
C
R
C
2
0
1
9
)
1
9
3

EAS-like event registered with TUS M. Bertaina

panel of Fig. 1. The colours correspond to the brightness temperatures of clouds. The position of
the event is marked by a star. The transparent area indicates the absence of clouds. It can be seen
that the atmosphere was clear at the time of observation of the event without any noticeable clouds
except some small low-altitude ones.

Waveforms for ten hit channels found in the TUS161003 event are shown in Fig. 2. The
average level of the background illumination is extracted from the ADC codes for clarity. The
waveforms are approximated with a so-called bi-Gaussian function, i.e., two Gaussian functions
smoothly sewed at the point of the maximum. The waveforms are ordered according to the po-
sition of the maximum of the fits, from top to bottom beginning from the left column. The hit
channels are grouped in an oblong spot, the shape of which might be a “convolution” of two fac-
tors, namely, the asymmetric PSF of the mirror and a linear track. Moments of the maximum of
the signal approximation in each channel have some shift from one channel to another, which can
be interpreted as a movement of the signal in the FOV of the detector.
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Figure 2: Signals in ten hit channels of the TUS161003 event with bi-Gaussian approximations. The average
level of background illumination is extracted from the signals for clarity. Numbers in parenthesis above the
panels indicate the module and channel numbers respectively. The x-axes represent time in µs.

The light curve of the event is shown in Fig. 3. The curve is clearly asymmetric, which is most
likely due to the delayed signal as a result of multiple scattering of photons in the atmosphere. The
following set of parameters was obtained by fitting the light curve with a bi-Gaussian function with
a coefficient of asymmetry defined as a ratio of the attenuation time to the rise time:

• the amplitude of the signal Imax ≈ 214 ph. µs−1 m−2;

• full duration at half maximum FDHM ≈ 58 µs;

• the coefficient of asymmetry α ≈ 2.4.
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Figure 3: Light curve of the TUS161003 event as the sum of signals in the ten hit channels. The signal
is smoothed with a moving average calculated for three time steps to minimize statistical fluctuations. The
average background illumination was extracted. The inset shows positions of the hit pixels in the focal
surface.

4. Reconstruction of the signal parameters

A reconstruction of the arrival direction of a relativistic particle can be seen as a search for
parameters of its track, i.e., a line segment on the focal plane of the detector, along which the signal
moves at a constant velocity:

x(t) = x0 +ux(t − t0), y(t) = y0 +uy(t − t0), (4.1)

where x(t) and y(t) are Cartesian coordinates of the image center in the focal plane at time t, (x0,y0)

is a point on the track corresponding to some t = t0, and ux,uy are projections of the point velocity
on the axes of the local Cartesian coordinate system. However, one should keep in mind that an
image of a point source hardly ever occupies a single channel because of the PSF, and the track is
not exactly linear because of the discrete structure of the focal plane.

An heuristic method of estimating parameters of a track was suggested in [11]. The method
is based on minimizing weighted least squares for Eqs. (4.1), independently for x and y. Weights
are chosen depending on signal values in the hit channels. An analysis that followed revealed the
method was sensitive to the choice of hit channels in case some of them have a weak signal. The
method was modified to diminish the effect. In the new algorithm, one minimizes the sum

∑
i

k2(i)

∑
k=k1(i)

Wi(tk) · (x0 + tkux −Xi)
2 (4.2)

over parameters x0 and ux, and a similar sum for y0, uy and Yi. Here, an index i runs over all hit
channels in the event, Wi(tk) is a weight proportional to the value of the signal at time tk, and Xi

and Yi are coordinates of the center of the ith pixel.
One of the key modifications aimed at reducing the influence of statistical fluctuations of the

ADC code on the results of the reconstruction is a search for the moments tk when the ith signal is
“active.” It was shown in a dedicated study of simulated events that the choice of the threshold for
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selecting an activity window equal to 30% relative to the amplitude value makes the reconstruction
procedure more robust.7

The accuracy of the method in application to the TUS161003 event was studied by simulating
1000 events with azimuth angles φ = 40◦ . . .60◦, zenith angles θ = 35◦ . . .55◦ and the subsequent
reconstruction of the initial parameters. As a result, the following estimates of the arrival direction
of the TUS event were obtained assuming it was caused by a relativistic particle:

φ =
(
50+3

−10

)◦
, θrec = (44±4)◦ .

An energy of a primary particle that presumably initiated the event is another parameter to be
found. One needs to know the sensitivity of PMTs forming the focal surface to accomplish the
task. Unfortunately, the system of automatic adjustment of high voltage did not work properly
during the first day of TUS operating in orbit. This lead to the loss of nearly 20% of all PMTs and
a change of sensitivities of the rest. A special procedure for an in-flight calibration of the working
channels was developed to overcome the problem. The method relies on an analysis of stationary
waveforms in the main mode of operation and in the one with the longest time steps. A thorough
application of the procedure to the ten hit channels, which will be explained in details elsewhere,
allowed us to estimate their new sensitivities. Together with extensive simulations of the detector
response to EASs generated by primary particles in the energy range 100–1100 EeV performed
with ESAF [12, 13], this took us to the lower limit of the energy of an UHECR ≈ 1000±200 EeV.

Figure 4 illustrates an expected response of TUS to an EAS generated by a 1 ZeV proton
arriving at the zenith angle θ ≈ 50◦. Five orders of scattering of fluorescence and Cherenkov
photons in the atmosphere were taken into account. An albedo of the surface was set equal to 2%
since this is the value of albedo of grass in the UV range of 320–390 nm [14], and the TUS161003
event was registered above a similar surface. One can see the dynamics of the signal similar to the
one shown in Fig. 2 for the TUS161003 event. The light curves demonstrate similar amplitudes but
the attenuation time in the simulated event is considerably shorter than in the real one due to the
shower front hitting the ground.

5. Discussion

It is straightforward to estimate the angular velocity of the image of the TUS161003 event
in the focal surface as ω ≈ 262 rad/s. This corresponds to the apparent velocity ≈ 0.43c of an
object moving at the distance of 500 km from the detector (perpendicular to the line of site). This
allows us to conclude that TUS registered a signal moving at a relativistic speed. This also justifies
the application of the method for reconstructing the arrival direction described above. A separate
analysis revealed that the signal was moving downward to the ground.

The most natural candidate to explain such a signal is an EAS generated by an UHECR.
However, the estimates presented above demonstrate a primary particle should have an energy of
the order of 1 ZeV to provide a signal with an amplitude similar to that in the TUS161003 event. No
CRs with so extreme energies have ever been registered with ground-based experiments. Taking

7Another parameter controlling the work of the method is the exponent n of weights Wi. It turned out that the
smallest bias in the reconstruction takes place for n ≈ 1, thus the exponent is omitted in 4.2.
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Figure 4: The TUS detector response to an EAS generated by a 1 ZeV proton arriving at θ ≈ 50◦. Left:
ADC codes of eight hit channels. Right: the light curve. The inset shows positions of the hit pixels in the
focal surface.

into account a limited exposure of the TUS mission (∼ 1200–1400 km2 sr yr as the first extimation)
and the fact that the flux of ZeV CRs is expected to be 2–4 orders of magnitude lower than that
around 100 EeV, chances of TUS registering such an energetic cosmic particle are very low.

Another important phenomenological feature of the event is that it develops very high in the
atmosphere. The duration of the signal and its slow attenuation ∼ 60 µs clearly seen in Fig. 3 allow
one to estimate Xmax ≈ 550 g/cm2, which corresponds to the altitude of ∼ 7.5 km. An even higher
altitude of the signal maximum is obtained if one assumes the narrow peak at around 150 µs to be
the Cherenkov one. These values are in a contradiction with what one expects from a ZeV event.

Interestingly, relativistic dust grains [15, 16] suggest a possible explanation of an extreme-
energy event developing high in the atmosphere. According to simulations [17, 18], an EAS initi-
ated by a massive relativistic dust grain develops at Xmax ∼ 200–400 g/cm2, which seemingly agrees
with the TUS161003 event. Remarkably, a cascade reaching its maximum high in the atmosphere
can explain why ground-based fluorescent detectors do not observe such events.

Finally, one should consider an anthropogenic origin of the TUS161003 event since its thun-
derstorm origin is unlikely. One of the possibilities consistent with the signal moving downward is
a laser shooting from the height of a few kilometers, for example, from an airplane. However, sim-
ple simulations show that the observed light curve cannot be explained by a laser lidar operation
in a pulse mode since the light curve should demonstrate either an exponential decay or a sharp
cut-off as soon as the beam hits the ground.
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[14] R. Chadyšienė and A. Girgždys, Ultraviolet radiation albedo of natural surfaces, J. of Environmental
Engineering and Landscape Management, 16 (2008) 83.

[15] L. Spitzer, On the origin of heavy cosmic-ray particles, Phys. Rev., 76 (1949) 583.

[16] S. Hayakawa, Dust grain origin of cosmic ray air showers, Astrophysics and Space Science, 16
(1972) 238.

[17] L. Anchordoqui, Cosmic dust grains strike again, Phys. Rev. D, 61 (2000) 087302.

[18] B. A. Khrenov, M. I. Panasyuk, V. V. Alexandrov, et al., Space Program KOSMOTEPETL (project
KLYPVE and TUS) for the study of extremely high energy cosmic rays, in Observing Ultrahigh Energy
Cosmic Rays from Space and Earth, American Institute of Physics Conference Series, 566 (2001) 57.

7


