PoS - Proceedings of Science
Volume 358 - 36th International Cosmic Ray Conference (ICRC2019) - CRI - Cosmic Ray Indirect
Trigger developments for the fluorescence detector of EUSO-TA and EUSO-SPB2
M. Battisti, M.E. Bertaina, F. Fenu, H. Miyamoto, K. Shinozaki,* A. Belov, F. Bisconti, M. Mignone, F. Capel on behalf of the JEM-EUSO Collaboration
*corresponding author
Full text: pdf
Pre-published on: July 22, 2019
Published on:
The JEM-EUSO program aims at detecting Ultra High Energy Cosmic Rays (UHECRs) by observing the fluorescence light produced by extensive air showers (EAS) in the Earth’s atmosphere. Within this program, a new generation of missions is being built, including (i) Mini-EUSO that will be installed on board the ISS in August 2019, (ii) an upgrade to the ground-based telescope EUSO-TA and (iii) the second super pressure balloon flight (EUSO-SPB2). All these detectors will have a dedicated trigger system based on a board equipped with a Xilinx Zynq device that will be able to detect different types of events on three different time-scales: a microsecond time-scale for cosmic ray detection (L1), a hundreds of microsecond time-scale for slower events like transient luminous events (TLEs) (L2), and a tens of millisecond time-scale used to produce a continuous monitoring, for even slower events like meteors or nuclearites. The L1 trigger logic for the upgrade of EUSO-TA and EUSO-SPB2 are being developed taking into account the peculiarity of each detector (optic system, FOV, frame length) starting from the logic already developed for Mini-EUSO. In particular, every pixel will have an independent threshold that will be dynamically adapted to the level of the background; a predetermined condition on the number, the position and the time distribution of pixels above threshold has to be satisfied in order to issue a trigger. This contribution will summarize the L1 trigger logics and the tests currently performed.
DOI: https://doi.org/10.22323/1.358.0426
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.