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As one of the pilot experiments of LHAASO, a hybrid array (HA) covering an area of 20000m2

was successfully constructed by the end of 2016 at the international Cosmic Ray Observatory at
YangBajing (YBJ) in Tibet of China. This array consists of 115 scintillation detectors and 16
underground muon detectors of 900m2. Using muons information, most of hadronic air showers
are rejected at several dozens of TeV energy regime. With the data collected from 2017 to 2018,
this work presents preliminary results on diffuse γ-ray emission from galactic plane. As a result,
there has no significant excess of TeV γ-ray in the galactic plane with the YBJ-HA observation.
Therefore, we put a 90% CL upper limit. We foresee that the under-construction LHAASO will
have great potential in observing γ-rays in several dozens of even up to hundreds of TeV energy
range.
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1. Introdution

Diffuse γ-ray is considered to be produced in the interactions of Cosmic Rays (CRs) with the
interstellar matter (ISM) and radiation fields (ISRF). Since γ-rays wouldn’t be affected by the mag-
netic field during their propagation, diffuse γ-ray is of importance to study the density of the ISM,
the propagation of CRs, and the characteristics of ISRF . Last decades have witnessed the devel-
opment of the observation of diffuse γ-ray, examples include OSO-III[1], SAS-2[2], EGRET[3],
Fermi-LAT[4, 5] at GeV energeis, and Whipple[6], HEGRA[7], Milagro[8], H.E.S.S.[9], ARGO-
YBJ[10] at TeV energies.

The gas density of galactic plane is very intensive, therefore this region is a compromising
target for the study of diffuse γ-ray emissions. In this area, Milagro telescope performed the obser-
vations of CYGNUS region and found the diffuse TeV γ-ray emission[8]. Subsequently ARGO-
YBJ experiment carried out a similar observation [10], which agreed well with the measurements
of Fermi-LAT at lower energy. Meanwhile, H.E.S.S. telescope array also performed survey at both
galactic plane[9] and center[11, 12]. Additionally, IceCube has searched for diffuse γ-ray in PeV
energy range but didn’t find significant excess [13] .

To date, diffuse γ-ray in the galactic plane has been measured up to TeV energies. The YBJ-
HA, benefitting by its high altitude which is about 4300 meter above sea level and large FOV of
about 2 steradian, is probable to capture some higher energies γ-ray emissions in this region. This
work presents the preliminary results of the analysis of the diffuse γ-ray emission from galactic
plane with energy above several dozens of TeV.

2. Experiment
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Figure 1: The schematic view of the YBJ-HA.

YBJ-HA is located at the site of the International YBJ observatory, which hosts the well known
ASγ and ARGO-YBJ experiments. This is an altitude where the extensive air showers reach the
maximum when their energy approach PeV. Fig.1 is a schematic view of the array. It consists of
115 scintillation surface detectors (SDs) which are used to detect the electromagnetic components,
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and 16 underground water Cherenkov muon detectors (MDs) about 900m2 focusing on observing
the muon component. Since CRs have hundred times more muon number than that of γ-rays, the
detection of muon is an effective tool to distinct γ-ray events from the enormous CRs background.
SDs are sparse detectors spaced 15 meters apart, while MDs consists of 16 compact water cells.
More detailed information about the array is presented in the Ref.[14].

In order to get a better understanding of our data, along with the analysis of data, we perform
the Monte carlo (MC) simulation with Corsika-74005 and Geant4.09.03. In the simulation of CRs,
the hadronic models QGSJET2 and GHEISHA are adopted for high and low energy respectively.
Five groups of nuclei are simulated, including H, He, CNO, MgAlSi, Fe, then normalized into
observed spectrums according to Gasser[15] and Horandel[16] component models. The sample
of γ-ray is generated by a spectrum index of -2.59, and it can be scaled to any specific spectrum.
Geant4 are used to simulate the process of charge particles and photons in SDs and MDs, to record
variables such as arrival time and deposition energy. The same reconstruction procedures are used
for MC samples and experimental data.

3. Analysis

3.1 data selection

The data set used in this work is taken from January 2017 to June 2018, totally ∼ 160 days of
live time because most of the time was devoted to debugging the White Rabbit electronic system of
LHAASO. With the MC study, the threshold energy of the dataset is about several TeV. According
to the characteristic of the reconstructed events, to ensure the quantity of the analyzed dataset, we
choose those events that meet the following selection criteria:

1. reconstructed zenith angle is θ ≤ 45◦;

2. the estimated core location is inside the guard ring;

3. the residual of time fitting is ≤ 1.0m;

4. sum of the particle’s density (sumpd), which is the primary energy estimator, is ≥ 100;

5. muon-poor event, whose total muon number Nµ < 0.6, is considered as γ-like event.

After event selections, the total analysed data samples is about 3× 105, and according to the MC
study, the median primary energy of γ-ray is ∼ 50 TeV and the angular resolution is ∼ 0.7◦.

3.2 background estimation

The diffuse γ-rays from the galactic plane, including inner (| gb |≤ 3◦,20◦ ≤ gl ≤ 105◦) and
outer (| gb |≤ 3◦,140◦ ≤ gl ≤ 225◦) plane, are targets of this work. The muon-poor selection
has been applied to distinguish γ-ray signal from overwhelming CR background. However, it’s
no doubt that there are still CR background contamination in the muon-poor samples. Therefore,
we adopt the All-Distance Equi-Zenith Method introduced in [17] to estimate the number of back-
ground in the signal region. Unlike traditional Equi-Zenith Method, which is often used to estimate
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the background for the point gamma-ray source, this method is fit for large-scale signal or back-
ground estimation, which meets the characteristics of this work.

The celestial space is divided into small cells (i,j) with 2◦×2◦, from 0◦ to 360◦ in right ascen-
sion and from 0◦ to 60◦ in declination. One thing to note is that, the bin size cell is much larger than
the the angular resolution of the array in order to avoid empty grid. While in the observer’s hori-
zontal coordinates, the zenith is divided by a step of 2◦, and the azimuth angle is binned dependent
on the zenith, the step is 2◦/sin(θ). The relative intensity is defined as Equ.(3.1)

I(i, j) =
Non(m,n, l)
No f f (m,n, l)

(3.1)

, where Non(m,n, l) and No f f (m,n, l) represent the events number at the local sidereal time (LST)
the cell in (θ ,ϕ) space (n,l) of the on- and off-source respectively. Since the relative intensities in
the belt of the same zenith are the same, based on the principle of least squares, the χ2 equation
can be constructed as Equ.(3.2)

χ2(m,n, l) =

Nobs(m,n, l)
I(i, j)

−
∑

l′ ̸=l

Nobs(m,n,l′)
I(i′, j′)

∑
l′ ̸=l

1


2

×

Nobs(m,n, l)
I2(i, j)

+

∑
l′ ̸=l

Nobs(m,n,l′)
I(i′, j′)

( ∑
l′ ̸=l

1)2


−1

(3.2)

where Nobs(m,n, l) and Nobs(m,n, l′) represents the observed events number in the on- and off-
source region. From all the direction and at all the time, the total χ2 can be written as χ2 =

∑
(m,n,l)

χ2(m,n, l), which are solved by iteration. Then the distribution of relative intensities with

declination and right ascension can be derived, as shown in the top of Fig.2.
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Figure 2: Relative intensity.

The galactic plane can be considered as an extended source. The excess event number and
error of the excess can be derived by Equ.(3.3) and Equ.(3.4). Therefore, the significance of each
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cell (i,j) can be calculated by Equ.(3.5).

Ns(i, j) = [I(i, j)−1]N(i, j)/I(i, j) (3.3)

∆Ns(i, j) = ∆I(i, j)N(i, j)/I(i, j) (3.4)

S(i, j) =
Ns(i, j)

∆Ns(i, j)
(3.5)

3.3 Large scale anisotropy

In order to observe the γ-ray from the galactic plane, the large-scale anisotropy of CRs need to
be deducted. As shown in Fig.4, the solid line represents the location of the galactic plane. From
the solid line region in Fig.2, it can be seen that though galactic plane is an extended region, it is
small compare with the scale of CRs anisotropy. During the deduction, the signal region is exclud-
ed, the anisotropy background in a specific declination is estimated by averaging its surrounding
±5◦ declinations. Then the large-scale CRs anisotropy which is shown in the middle of Fig.2 is
subtracted, and the bottom of Fig.2 shows the relative intensity after the anisotropy deduction. Ac-
tually, it can be seen that the influence of the large-scael CRs anisotropy on the relative intensities
of the γ-like events is quite small.

4. Results and Summary
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Figure 3: The left panel shows the significance level distribution of the all-sky, the right presents these from
the inner and outer galactic plane.

Fig.3 exhibits the significance level distributions, which are consistent with the Gaussian func-
tion. It indicates that no significant excess has been detected in this area by YBJ-HA. With the same
analysis procedure, the data samples with sumpd range from 50 to 100, whose primary energy is
about 20 TeV, is also analyzed. Fig.4 shows upper limits on the diffuse γ-ray in the galactic plane
following the statistical method given by Helene[18]. To reduce some systematic errors, upper
limit on the flux ratio of γ-rays to CRs is also presented in Fig.5.
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Figure 4: 90% CL upper limits on the flux of the inner and outer galactic plane. Results from other experi-
ments come from Ref.[10]
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Figure 5: 90% CL upper limits on the ratio of γ-rays to CRs. Results from other experiments come from
Ref.[19]

The preliminary analysis presented here shows that no significant excess on the observation of
several dozens of TeV γ-ray in the galactic plane observed by YBJ-HA in the first 160 days. We
set 90% CL upper limits on this region. As a pilot experiment of LHAASO experiment, the scale
of the YBJ-HA is not large enough to capture gamma-ray emissions in such a short time duration.
Even so YBJ-HA has been continuing collecting data, in addition, we foresee that the LHAASO
will have a brighter further in the observation of γ-rays.
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