Main Image
Volume 358 - 36th International Cosmic Ray Conference (ICRC2019) - DM - Dark Matter
The search for dark matter with metastable mediators with the IceCube observatory
C. Tönnis
Full text: pdf
Pre-published on: 2019 August 20
Published on:
Abstract
The IceCube neutrino observatory is a 3D array of photodetectors installed in the Antarctic ice. It consists of 5,160 photomultiplier-tubes spread among 86 vertical strings making a total detector volume of more than a cubic kilometer. It detects neutrinos via Cherenkov light of charged relativistic particles from neutrino interactions with the detector volume. IceCube is, due to its size and photosensor spacing, particularly sensitive to high-energy neutrinos. In this analysis we search for dark matter that annihilates into a metastable mediator that subsequently decays into Standard Model particles. These models yield an enhanced high-energy neutrino flux from dark matter annihilation inside the Sun compared to models without a mediator. Neutrino signals that are produced directly inside the Sun are strongly attenuated at higher energies due to interactions with the solar plasma. In the models considered here, the mediator can escape the Sun before producing any neutrinos, thereby avoiding attenuation. IceCube is ideal to search for this enhanced high-energy neutrino signal. We present the sensitivities of an analysis of six years of IceCube data looking for dark matter in the Sun considering mediator lifetimes between 1 ms to 10 s and dark matter masses between 200 GeV and 10 TeV. We show that IceCube is sensitive to spin--dependent cross--sections of $3.45 \times 10^{-34}~\rm cm^2$ for dark matter masses of 1 TeV.
Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.