All-Sky-ASTROGAM: a MeV Companion for Multimessenger Astrophysics
M. Mallamaci*, A. De Angelis, V. Tatischeff, R. Rando, M. Tavani, U. Oberlack,
R. Walter, G. Ambrosi, A. Argan, P. von Balmoos, D. Bastieri, E. Bernardini, S. Brandt, A. Bulgarelli, A. Bykov, V. Fioretti, I.A. Grenier, L. Hanlon, D. Hartmann, M. Hernanz, G. Kanbach, I. Kuvvetli, P. Laurent, M. Mariotti, M.N. Mazziotta, J. Mc Enery, S. Mereghetti, A. Morselli, K. Nakazawa, M. Pearce, E. Prandini, J. Rico, R. Curado da Silva, X. Wu, A. Zdziarski, A. Zoglauer on behalf of the All-Sky-ASTROGAM Collaborationet al. (click to show)
Pre-published on:
July 22, 2019
Published on:
July 02, 2021
Abstract
In the era of multi-messenger astronomy it is of paramount importance to have in space a gamma-ray monitor capable of detecting energetic transients in the energy range from 0.1 MeV to a few hundred MeV, with good imaging capabilities. The All-Sky-ASTROGAM mission proposal aims to place into an L2 orbit a gamma-ray instrument ($\sim$ 100 kg) dedicated to fast detection, localization, and gamma-ray spectroscopy of flaring and merging activity of compact objects in the Universe, with unprecedented sensitivity and polarimetric capability in the MeV range. The instrument is based on the ASTROGAM concept, which combines three detection systems of space-proven technology: a silicon tracker in which the cosmic gamma rays undergo Compton scattering or a pair conversion, a scintillation calorimeter to absorb and measure the energy of the secondary particles, and an anticoincidence system to veto the prompt reaction background induced by charged particles. The gamma-ray imager and the platform will be connected through a boom and will have almost no occultation, making possible a continuous monitoring of every single gamma-ray source in the sky during the entire mission lifetime.
DOI: https://doi.org/10.22323/1.358.0579
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.