PoS - Proceedings of Science
Volume 358 - 36th International Cosmic Ray Conference (ICRC2019) - GRD - Gamma Ray Direct
All-Sky-ASTROGAM: a MeV Companion for Multimessenger Astrophysics
M. Mallamaci,* A. De Angelis, V. Tatischeff, R. Rando, M. Tavani, U. Oberlack, R. Walter, G. Ambrosi, A. Argan, P. von Balmoos, D. Bastieri, E. Bernardini, S. Brandt, A. Bulgarelli, A. Bykov, V. Fioretti, I.A. Grenier, L. Hanlon, D. Hartmann, M. Hernanz, G. Kanbach, I. Kuvvetli, P. Laurent, M. Mariotti, M.N. Mazziotta, J. Mc Enery, S. Mereghetti, A. Morselli, K. Nakazawa, M. Pearce, E. Prandini, J. Rico, R. Curado da Silva, X. Wu, A. Zdziarski, A. Zoglauer on behalf of the All-Sky-ASTROGAM Collaboration
*corresponding author
Full text: pdf
Pre-published on: July 22, 2019
Published on:
Abstract
In the era of multi-messenger astronomy it is of paramount importance to have in space a gamma-ray monitor capable of detecting energetic transients in the energy range from 0.1 MeV to a few hundred MeV, with good imaging capabilities. The All-Sky-ASTROGAM mission proposal aims to place into an L2 orbit a gamma-ray instrument ($\sim$ 100 kg) dedicated to fast detection, localization, and gamma-ray spectroscopy of flaring and merging activity of compact objects in the Universe, with unprecedented sensitivity and polarimetric capability in the MeV range. The instrument is based on the ASTROGAM concept, which combines three detection systems of space-proven technology: a silicon tracker in which the cosmic gamma rays undergo Compton scattering or a pair conversion, a scintillation calorimeter to absorb and measure the energy of the secondary particles, and an anticoincidence system to veto the prompt reaction background induced by charged particles. The gamma-ray imager and the platform will be connected through a boom and will have almost no occultation, making possible a continuous monitoring of every single gamma-ray source in the sky during the entire mission lifetime.
DOI: https://doi.org/10.22323/1.358.0579
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.