PROCEEDINGS

OF SCIENCE

Gammalearn: a Deep Learning framework for IACT
data

Mikaél Jacquemont®’, Thomas Vuillaume“, Alexandre Benoit’, Gilles Maurin?,
Patrick Lambert’, Giovanni Lamanna“, Ari Brill**
“LAPP, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS
9 Chemin de Bellevue, Annecy-le-Vieux, 74940 Annecy, France
bLISTIC, Université Savoie Mont-Blanc Polytech Annecy-Chambéry,
5 chemin de bellevue, Annecy-le-Vieux, 74940 Annecy, France
¢Columbia University, Department of Physics,
New York, NY, USA
E-mail: mikael. jacquemont@lapp.in2p3.fr,
thomas.vuillaume@lapp.in2p3.fr

Imaging atmospheric Cherenkov telescopes (IACT) data require an important analysis in order to
reconstruct events and obtain a photon list. The state-of-the-art reconstruction is made of several
steps including image analysis, features extraction and machine learning. Since the 2012 Ima-
geNet breakthrough, deep learning advances have shown dramatic improvements in data analysis
across a variety of fields. Convolutional neural networks look particularly suited to the task of
analysing IACT camera images for event reconstruction as they provide a way to reconstruct
photon list directly from raw images, skipping the pre-processing steps. Moreover, despite de-
manding important computing resources to be trained and optimised, neural networks show very
good performances during execution, making them viable for real-time analysis for the future
generation of IACT. Here we present Gammalearn , a python framework providing the tools and
environment to easily train neural networks on IACT data. Relying on PyTorch, it allows the use
of indexed convolution on images with non-cartesian pixel lattices predominant in IACT for the
low-level operations and offers a simple configuration file-based workflow, producing the trained
model, training estimators as well as higher level results. The proposed framework is modular
and straightforward to customize by end users. It has been tested and validated on the analysis of

the Cherenkov Telescope Array simulated data.

36th International Cosmic Ray Conference -ICRC2019-
July 24th - August 1st, 2019
Madison, WI, U.S.A.

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:mikael.jacquemont@lapp.in2p3.fr
mailto:thomas.vuillaume@lapp.in2p3.fr

GammaLearn: a Deep Learning framework for IACT data Ari Brill¢

1. Deep learning for IACTs image analysis

Imaging Atmospheric Cherenkov Telescopes (IACTs) observe the Cherenkov light emitted by
cosmic rays entering the atmosphere thanks to an optical system collecting and focusing the light
onto an ultra-rapid camera. The produced images of the atmospheric shower must be analysed
and combined to take advantage of the stereoscopic view and to reconstruct the physical param-
eters (mainly particle type, arrival direction and particle energy) of the primary particle. This
reconstruction is based on Monte-Carlo simulations generating images based on the simulation of
particles interaction in the atmosphere and simulation of the telescope response function. Several
reconstruction methods have been developed through the years either based on features extraction
[1, 2, 3, 4] or on templates method directly comparing images with simulated ones [5, 6, 7].

Since the Imagenet breakthrough in 2012 [8, 9], Deep Learning (DL) has established state of

the art performances in various range of fields, from natural language processing [10] to computer
vision [11, 12]. Taking advantage of these recent advances in image analysis, [13, 14, 15, 16]
have applied Convolutional Neural Networks (CNN) to y event reconstruction from IACT images,
showing promising results.
The GammaLearn project, born from a collaboration of the Laboratory of Annecy of Particle
Physics (LAPP), the Laboratoire d’Informatique, Systemes, Traitement de I’Information et de la
Connaissance (LISTIC) and an industrial partner specialized in Deep Learning solutions for man-
ufacturers, Orobix, aims to explore DL techniques for IACT and in particular the Cherenkov Tele-
scope Array (CTA) data analysis.

2. GammalLearn framework

Deep Learning is a highly empirical process requiring many training and testing cycles of
different architectures with different hyperparameters. Moreover, the goal of the Gammal.earn
project is to find the best possible neural networks for gamma / cosmic rays separation and gamma
parameters reconstruction, stressing the need of a tool to ensure reproducibility, traceability and
easy launch for all the experiments to be run.

2.1 Description

The Gammalearn framework[17] has been designed to tackle these issues. It is a modular

and plug and play Python first tool that relies on PyTorch[18] for DL capabilities, mainly tensor
manipulation, automatic differentiation (which is essential for gradient descent optimization) and
GPU computations. In Gammalearn the training process itself (i.e. the execution of the training,
validating and testing loops) is handled by Ignite (v1.0a)[19] in order to benefit from its event
management system. In the following, an experiment designates the whole process of training and
testing a CNN with particular hyperparameters.
As described on Fig. 1, Gammalearn is composed of an engine, the experiment_runner, and 7
collections of tool functions and classes. The experiment_runner role is to load and check the
experiment settings, via the Experiment class, load the training data, load the CNN, train, validate
and test the loaded CNN and produce monitoring data and performance metrics, as defined in the
experiment settings file. The tool collections provide all the functions and classes to:

GammaLearn: a Deep Learning framework for IACT data Ari Brill¢

load datasets,

pre-process data (filter, augment, transform),

train, validate and test networks,

monitor the training process,

visualize training results.

Each collection of tools, serving a specific purpose, follows the same prototype for function and
class definition. For example, the Handlers collection contains functions to handle the events fired
by Ignite’s engine, like training or validation loss logging when an epoch is completed. To add a
new handler or to build one’s own collection of handler compatible with Gammalearn , one needs

to observe the following prototype:

def create_new_handler (experiment):

Function to create a handler
Parameters

experiment (Experiment): the experiment
Returns

A function registrable by ignite Trainer

non

do something

def handle_an_event(trainer):

do something

return handle_an_event
The collections allow the user to run various types of experiment on IACT data: classification,
regression, single task learning, multi-task learning, mono or stereo analysis.
Beside the different collections, the plug and play quality of Gammal.earn also results from its
Python first nature. Each component of the framework is written in Python, even the experiment
settings file, allowing the user to add his own components by calling them in the experiment settings
file.

2.2 Ecosystem

To be an efficient DL framework for IACT data, GammalLearn is integrated in a wide ecosys-
tem of tools:

e IndexedConv[20] : the IndexedConv package provides convolution and pooling operations
for images with any kind of grid. Indeed, in the case of hexagonal grid images, standard 2D
convolution functions implemented DL frameworks are not suitable because they assume the
grid of the image they process to be Cartesian. IndexedConv relies on the list of neighbours
of each pixel of interest to compute the convolution, and thus can be applied to any image
grid and shape. Moreover, it comes with all the needed functions for hexagonal grid images
in particular and CTA images in general (i.e. building the necessary index matrix, extracting
the list of neighbours from it). IndexedConv is fully supported by Gammal.earn .

GammaLearn: a Deep Learning framework for IACT data Ari Brill¢

A
Gammalearner
TensorboardX # Summary Files Tensorboard
Handlers . . J
Data
Y
handlers [~ Raw test data w\
e —
High level liba GammaBoard
Datasets | Network
checkpoints | J
t i Experiment Visualizati
Stepe ‘; \ settings backup Isu'lgli on
—_ and logs
-
o Experiment runner
Criterions P
e —
Optimizers
Experiment settings J
Utils O PyTorch
_ Network
Automatic differentiation tool definition

Figure 1: Description of the Gammalearn framework. Gammal.earn comes with a set of function and
class collections (in pink) to process IACT data. It relies on PyTorch for the Deep Learning fundamentals
and on Ignite for the training routines. Gammal.earn generates monitoring and performances data during
the training, directly workable by Tensorboard and GammaBoard.

e GammaBoard: GammaBoard! is a dashboard build to display metrics assessing the recon-
structions performances of Imaging Atmospheric Cherenkov Telescopes (IACTs). It is built
upon the widespread Jupyter Notebook[21] technology. It benefits from Matplotlib[22] in-
teractive plots and ctaplot® for IACT related metrics (resolutions curves and effective area).
Thanks to its click-and-play interface, as shown on Fig. 2, it allows a quick and simple
comparison of the experiments.

e Tensorboard

Tensorboard® is a suite of web applications coming with Tensorflow[23]. It offers useful
tools to visualize monitoring data (e.g. network weights distribution over the training or
GPU memory used), training performances (e.g. loss and accuracy evolution) and to inspect
neural networks. Thanks to tensorboardX*, a module to export data in a format readable by
Tensorboard, and the Handlers collection, GammalLearn benefits from the power of Tensor-
board.

e DL 1 Data Handler

Thttps://github.com/gammaboard
Zhttps://github.com/vuillaut/ctaplot
3https://github.com/tensorflow/tensorboard
“https://github.com/lanpa/tensorboardX

https://github.com/gammaboard
https://github.com/vuillaut/ctaplot
https://github.com/tensorflow/tensorboard
https://github.com/lanpa/tensorboardX

GammaLearn: a Deep Learning framework for IACT data

Ari Brill¢

DL1 data handler (DL1DH)’ is a Python library to handle calibrated images from CTA.
The package has been developed to handle CTA raw data and write, read and apply image
processing to calibrated images. DL1DH has been integrated to Gammalearn to ease the
process of loading CTA data and provide them seamlessly to the framework. As IACTs
image are often non-standard images (e.g. presenting hexagonal pixels in hexagonal lattices),
image pre-processing (e.g. oversampling, rebinning or interpolation) can be applied thanks

to DL1DH. A study of the effect of these pre-processing has been realised by [24].

08

06

eldeg]
o
2

Angular resolution

— T requirements north

(BE/E)se

Energy resolution

— CTAvequirements north

g &

Impact resolution [km]

Energy [TeV]

Effective Area [m?]

107 10° 100
Energy [TeV]

— CTArequirements north

10 10° 10

Energy [TeV)
Receiver Operating Characteristic

True Positive Rate

AUC = 0.8246, Pr = 07458, R = 0.9533, Gammaness
AUC = 08739, Pr = 0.7876, R = 0.9408, Gammaness

Interactive selection
of the experiment
to display

LR

gb.exp_box

00 02 04 06 08 10
False Positive Rate

> ¢ 0B

R_0313 R0312

exp_nane : R 0312
files_folders

dataset_class
dataset_paraneters

group_by
use_tine
particle

nun_epochs.

batch_size

filters
telescope_id_filter

cleaning_filter
apply_cleaning
picture_thresh
boundary_thresh
keep_isolated pixels

network
GLNetHonoMTshal LowEneray

n_teatures
init
num_channels :
batchnorm
drop_rate :
bias
nun_class :
regressor

impact i -
direction :

nin husber.picture neighbors ©

102 10° 10
Energy [TeV]

Rom2 Roms

Interactive IACTs
metrics plots

Download plot

AN

Selected experiments
information

Figure 2: Gammaboard interface. It allows the user to interactively display experiments results with metrics
specific to IACTs, providing a quick and meaningful comparison.

To fully benefit from this ecosystem, it is highly recommend to use Conda® environment man-

ager.

2.3 Work-flow

As shown on Fig. 1, the work-flow to train a network on IACT data with Gammal.earn is

Shttps://github.com/cta-observatory/dl 1-data-handler
Shttps://conda.io/en/latest/

https://github.com/cta-observatory/dl1-data-handler
https://conda.io/en/latest/

GammaLearn: a Deep Learning framework for IACT data Ari Brill¢

pretty straightforward. For a typical experiment, i.e. taking advantage of the already implemented
class and functions in the GammaLearn ’s collections, one needs to provide the framework with an
experiment settings file (in Python) and the desired network definition (with PyTorch). An example
of experiment settings file can be found in the Gammal.earn repository, in the folder examples,
comprising all the mandatory and the optional setting fields handled by the framework. Then, to
start the experiment, one executes the following commands in a bash terminal:

source activate <Gammalearn conda environment>

> cd <path to Gammalearn>/gammalearner
3 python experiment_runner.py <experiment_settings_path> [-—logdir] [——debug]

The framework trains the network and produces the monitoring and performance data as defined in
the experiment settings file.

3. Conclusion

Deep learning methods based on convolutional neural networks are becoming the most power-
ful approach for most image analysis tasks, pushing the development of standard tools and libraries
to apply them effortlessly and in a reproducible way. The study and use of CNN is likely to spread
also in the gamma-ray astronomy to treat telescope and astronomical images. Gammal.earn and
its environment provide a complete framework and environment for their study and application to
IACTs images. It solves some of the main challenges scientists are facing when applying CNN to
the reconstruction of IACTs data: the application of convolutions on hexagonal images, the combi-
nation of several telescopes images, loading and treating IACTs data, displaying high-level metrics
and comparing them for different experiments, reproducibility of the experiments via configuration
files.

4. Acknowledgement

We gratefully acknowledge financial support from the agencies and organizations listed here:
www.cta-observatory.org/consortium_acknowledgment. This project has received funding from
the European Union’s Horizon 2020 research and innovation programme under grant agreement
No 653477. This work has been done thanks to the facilities offered by the Univ. Savoie Mont
Blanc - CNRS/IN2P3 MUST computing center. We gratefully acknowledge the support of the
NVIDIA Corporation with the donation of one NVIDIA P6000 GPU for this research.

GammaLearn: a Deep Learning framework for IACT data Ari Brill¢

References

[1]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

J. Albert, E. Aliu, H. Anderhub, P. Antoranz, A. Armada, M. Asensio, C. Baixeras, J. A. Barrio,

H. Bartko, and D. Bastieri, “Implementation of the Random Forest method for the Imaging
Atmospheric Cherenkov Telescope MAGIC,” Nuclear Instruments and Methods in Physics Research
A, vol. 588, pp. 424-432, Apr 2008.

S. Ohm, C. van Eldik, and K. Egberts, “y/hadron separation in very-high-energy y-ray astronomy
using a multivariate analysis method,” Astroparticle Physics, vol. 31, pp. 383—-391, Jun 2009.

K. Egberts, J. Hinton, and H.E.S.S. Collaboration, “Towards measuring the cosmic ray electron
spectrum from ground level,” Advances in Space Research, vol. 42, pp. 473-476, Aug. 2008.

R. K. Bock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jifina, J. Klaschka, E. Kotr¢,
P. Savicky, S. Towers, A. Vaiciulis, and W. Wittek, “Methods for multidimensional event
classification: a case study using images from a Cherenkov gamma-ray telescope,” Nuclear
Instruments and Methods in Physics Research A, vol. 516, pp. 511-528, Jan. 2004.

M. Lemoine-Goumard, B. Degrange, and M. Tluczykont, “Selection and 3D-reconstruction of
gamma-ray-induced air showers with a stereoscopic system of atmospheric Cherenkov telescopes,”
Astroparticle Physics, vol. 25, pp. 195-211, Apr. 2006.

R. D. Parsons and J. A. Hinton, “A Monte Carlo template based analysis for air-Cherenkov arrays,”
Astroparticle Physics, vol. 56, pp. 26-34, Apr. 2014.

M. de Naurois and L. Rolland, “A high performance likelihood reconstruction of y-rays for imaging
atmospheric Cherenkov telescopes,”’ Astroparticle Physics, vol. 32, pp. 231-252, Dec. 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information processing systems, pp. 1097-1105, 2012.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving neural
networks by preventing co-adaptation of feature detectors,” pp. 1-18, 2012.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in Proceedings of the IEEE
International Conference on Computer Vision (2017).

D. Nieto, A. Brill, B. Kim, T. B. Humensky, Others, C. T. A. Consortium, and Others, “Exploring
deep learning as an event classification method for the Cherenkov Telescope Array,” arXiv preprint
arXiv:1709.05889, pp. 1-8, 2017.

T. L. Holch, I. Shilon, M. Biichele, T. Fischer, S. Funk, N. Groeger, D. Jankowsky, T. Lohse,
U. Schwanke, and P. Wagner, “Probing convolutional neural networks for event reconstruction in
gamma-ray astronomy with cherenkov telescopes,” arXiv preprint arXiv:1711.06298, 2017.

S. Mangano, C. Delgado, M. 1. Bernardos, M. Lallena, J. J. R. Vazquez, C. Consortium, et al.,
“Extracting gamma-ray information from images with convolutional neural network methods on
simulated cherenkov telescope array data,” in IAPR Workshop on Artificial Neural Networks in
Pattern Recognition, pp. 243-254, Springer, 2018.

GammaLearn: a Deep Learning framework for IACT data Ari Brill¢

[16]

[17]

(18]

[19]
[20]

(21]

[22]

(23]

[24]

I. Shilon, M. Kraus, M. Biichele, K. Egberts, T. Fischer, T. L. Holch, T. Lohse, U. Schwanke,
C. Steppa, and S. Funk, “Application of deep learning methods to analysis of imaging atmospheric
cherenkov telescopes data,” Astroparticle Physics, vol. 105, pp. 44-53, 2019.

T. Vuillaume, M. Jacquemont, L. Antiga, A. Benoit, P. Lambert, G. Maurin, G. Silvestri, and the
CTA consortium, “Gammalearn - first steps to apply deep learning to the cherenkov telescope array
data,” in CHEP 2018 - 23rd International Conference on Computing in High Energy and Nuclear
Physics, 2018.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer, “Automatic differentiation in pytorch,” in NIPS-W, 2017.

“Ignite.” https://github.com/pytorch/ignite, 2017-2018.

M. Jacquemont., L. Antiga., T. Vuillaume., G. Silvestri., A. Benoit., P. Lambert., and G. Maurin.,
“Indexed operations for non-rectangular lattices applied to convolutional neural networks,” in
Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications - Volume 5: VISAPP,, pp. 362-371, INSTICC, SciTePress, 2019.

M. Ragan-Kelley, F. Perez, B. Granger, T. Kluyver, P. Ivanov, J. Frederic, and M. Bussonnier, “The
jupyter/ipython architecture: a unified view of computational research, from interactive exploration to
communication and publication.,” in AGU Fall Meeting Abstracts, 2014.

J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engineering, vol. 9,
no. 3, pp. 90-95, 2007.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al., “Tensorflow: A system for large-scale machine learning,” in 12th { USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16), pp. 265-283, 2016.

A. Brill, Q. Feng, M. Jacquemont, B. Kim, T. Miener, D. Nieto, and T. Vuillaume, “Studying deep
convolutional neural networks with hexagonal lattices for imaging atmospheric cherenkov telescope
event reconstruction,” in ICRC 2019, these proceedings, 2019.

https://github.com/pytorch/ignite

