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CTLearn is a new Python package under development that uses the deep learning technique to
analyze data from imaging atmospheric Cherenkov telescope (IACT) arrays. IACTs use the
Cherenkov light emitted from air showers, initiated by very-high-energy gamma rays, to form
an image of the longitudinal development of the air shower on the camera plane. The spatial,
temporal, and calorimetric information of the originating high-energy particle is then recorded
electronically. The sensitivity of IACTs to astrophysical sources depends strongly on the efficient
rejection of the background of much more numerous cosmic-ray showers. CTLearn includes
modules for running machine learning models with TensorFlow, using pixel-wise camera data as
input. Its high-level interface provides a configuration-file-based workflow to drive reproducible
training and prediction. We illustrate the capabilities of CTLearn by presenting some results using
IACT simulated data.
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1. Introduction

In this contribution we introduce CTLearn [1], a new Python package under development
that enables the application of deep learning techniques to event reconstruction in the analysis
of data from imaging atmospheric Cherenkov telescope (IACT) arrays. IACTs are instruments
sensitive to very-high-energy (& 10’s GeV) gamma rays, by capturing images of the extended air
showers that these gamma rays, as well as cosmic rays, produce when absorbed by the atmosphere.
The information contained in those images can be exploited to infer the properties of the shower
progenitor: particle type, energy and arrival direction. This so-called event reconstruction is crucial
in the analysis of IACT data, since it determines the effectiveness of the background suppression
(the rejection of the much more frequent cosmic-ray initiated showers) and the angular and energy
resolutions of the instrument, the main drivers of IACT sensitivity to astrophysical gamma-ray
sources.

The morphological differences between gamma-ray and cosmic-ray initiated showers, trans-
lated into their IACT images, can be used to distinguish them. Handcrafted features extracted
from the images and box cuts over the multidimensional space of features were originally used
for particle classification [2], later evolving into more sophisticated strategies where supervised
learning algorithms like Random Forests [3] or Boosted Decision Trees [4, 5, 6], trained on those
handcrafted features, substantially improved the classification performance and, consequently, the
sensitivity of the IACTs that implemented them into their analysis chains. Deep convolutional
neural networks (DCNs), a particular class of deep learning algorithms, currently are the most
successful machine learning method for computer vision, excelling at image classification among
other tasks [7]. DCNs belong to the class of representation learning, where the agent that crafts the
features to learn from is the algorithm itself. DCNs present the potential to access all the informa-
tion contained in the images, not only that one condensed in handcrafted features extracted from
those images. The capability of DCNs to classify gamma-ray from cosmic-ray simulated events
was demonstrated in [8] for the first time. Their ability to tag muon events was later shown in [9],
as well as their potential to reconstruct the energy and arrival direction of simulated gamma-ray
events [10] and to improve the sensitivity of the analysis on real data [11].

CTLearn aims to help the IACT community explore and use deep learning models, with a
particular focus on DCN-based models. This contribution is structured as follows: Sec. 2 presents
the framework design for this package, discusses the data input method, the configurable settings,
and describes the currently implemented models for gamma-ray/cosmic-ray particle classification;
Sec. 3 contains benchmarking results for the models introduced in the previous section, obtained
after training on a dataset of Monte Carlo simulated IACT events; and we conclude by briefly
describing plans for future developments in Sec. 4.

2. CTLearn framework

CTLearn provides a backend for training deep learning models for IACT event reconstruction
using TensorFlow [12]. CTLearn allows its user to focus on developing and applying new models
while making use of functionality specifically designed for IACT event reconstruction. It uses
YAML configuration files to encourage reproducible training and prediction, ensuring that settings
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used to train a model are explicitly set and automatically recorded. Data loading and pre-processing
are performed using an associated external package, DL1-Data-Handler (DL1DH, [13]). DL1DH
contains modules for writing data to an HDF5 format designed for IACTs using PyTables, loading
data stored in this format, applying arbitrary transformations to the data, and mapping hexagonally
spaced pixels to rectangular matrices.

CTLearn is organized around the run_model module, which parses the configuration, loads
the data, and initializes the model; then, depending on the mode, it either trains the model, uses the
trained model to generate predictions on a test set, or displays properties of the dataset. CTLearn
also includes a number of ancillary scripts, providing a convenient way to summarize the results
and make plots using the output it produces. A diagram summarizing the CTLearn framework can
be found in Fig. 1.

The version of the package at the time of these proceedings is v0.4.0, running on Python
3.7.3 and TensorFlow 1.13. Other dependencies are DL1-Data-Handler, NumPy, and PyYAML, in
addition to Matplotlib, Pandas, and Scikit-Learn, which are used only in the supplementary scripts.

CTLearn
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+ model_params

+ example_description

+ training

run_multiple_configurations.py
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Figure 1: Diagram summarizing CTLearn’s framework design.

2.1 Settings

As mentioned above, CTLearn keeps all run settings in a single configuration file. A descrip-
tion of the main configuration options follows.

Data input The user can describe the dataset to use and relevant settings for loading and
processing it. These settings are used to initialize a DL1DH DL1DataReader, which loads the
data files, maps the images from vectors to arrays, applies preprocessing, and returns the data as
an iterator. DL1DH includes a number of different image mapping methods [14]. Data can be
loaded in three modes: mono, where single images of one telescope type are loaded; stereo, where
events (that is, the collection of images from all telescopes triggered by a given air shower) of one
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telescope type are loaded; and multi-stereo, where events including multiple telescope types are
loaded.

Model CTLearn works with any TensorFlow model obeying a generic signature logits =

model(features, params, example_description, training) where logits

is a vector of raw (non-normalized, pre-Softmax) predictions, features is a dictionary of tensors,
params is a dictionary of model parameters, example_description is a DL1DataReader ex-
ample description, and training is a Boolean that’s true when training and false when validating
or testing. In addition, CTLearn includes three models for gamma-ray/cosmic-ray classification.
The single-tel model classifies single telescope images using a convolutional network, whereas the
CNN-RNN and variable input models perform array-level classification by feeding the output of
a DCN for each telescope into either a recurrent network, or a convolutional or fully-connected
network head, respectively. All three models are built on a simple, configurable module called
Basic, providing customizable models essentially consisting of stacks of convolutional layers.
These models use rectified linear units as the activation functions in all layers.

Training The user can customize training hyperparameters such as the fraction of data ran-
domly extracted from the training dataset for validation purposes, the number of validations to run,
how often to evaluate on the validation set, the optimizer, and the base learning rate for the chosen
optimizer. Loss class weighting, for unbalanced datasets, is also available.

TensorFlow The user can set parameters for data input using the TensorFlow Dataset and
Estimator APIs. The TensorFlow debugger can also be optionally invoked.

Prediction The user can specify the prediction settings such as the path to write the prediction
file and whether to save the labels and example identifiers along with the predictions.

Multiple configurations CTLearn features a tool to run multiple configurations in series,
sourcing from a single configuration file. This tool can be used to optimize hyperparameters by
running over discrete sets or performing grid or random searches over linear or logarithmic-spaced
ranges.

Logging The user specifies the directory to store TensorFlow checkpoints and summaries, a
timestamped copy of the run configuration, and optionally a timestamped file with logging output.

2.2 Some built-in models

In the following, the single-tel and the CNN-RNN models are described in more detail.
Single-tel model The single-tel model consists of four convolutional layers with 32, 32, 64,

and 128 filters and a kernel size of 3 in each layer, interspaced by an activation layer followed
by a max-pooling layer with a kernel size (and stride) of 2; the output of the convolution block is
then flattened and fed to a fully connected layer with an output dimensionality of 2, the number of
classes.

CNN-RNN model In order to take advantage of the stereoscopic view of the air shower as
imaged by an array of telescopes, DCN models must be able to take several images as their input.
The CNN-RNN model (from the combination of convolutional neural network, CNN, and recurrent
neural network, RNN), similar to the architecture presented in [11], takes as input a fixed number of
images coming from the same imaged shower; each image is fed into a convolutional block, defined
identically to the single-tel model (weights are shared among all convolutional blocks participating
in this stage); the output tensor from each convolutional block is then fed into a dropout layer
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that in turn feeds into a recurrent neural network, specifically, an LSTM (long short-term memory)
layer, with a size for the hidden state of 2048; after flattening, the output of the LSTM layer is then
passed to a concatenation of three fully connected layers, each preceded by a dropout layer, with
1024, 512, and two neurons respectively. The default dropout value for this model is set to 0.5. A
diagram depicting the main architecture of the CNN-RNN model can be found in Fig. 2.

3. Benchmark

3.1 Benchmark dataset

DCN
[...]

[...]

LSTM

Dropout

Dropout

Dense

Dense

Dropout

Prediction

Dropout

Figure 2: Diagram depicting the main layers
of the CNN-RNN model.

The Cherenkov Telescope Array (CTA)1 is
the next generation ground-based observatory for
gamma-ray astronomy at very-high energies, aim-
ing to improve on the sensitivity of current-
generation experiments by an order of magni-
tude and provide energy coverage from 20 GeV
to more than 300 TeV. CTA will consist of two
installations, located in the Northern (La Palma,
Spain) and Southern (near Cerro Paranal, Chile)
Hemispheres, accounting for more than 100 tele-
scopes and allowing for full sky access. The
dataset used in this work comes from a reduction
of the third large-scale Monte Carlo production
for CTA, whose main purpose was to issue a final
recommendation for the layout of telescopes that
will define both the Northern and the Southern Hemisphere arrays of the observatory [15]. This
reduction, from raw to calibrated data, was performed on the EGI2 using DL1DH. We restricted
ourselves to simulated data from the Southern array, containing four large-size telescopes (LSTs),
25 medium-size telescopes (MSTs), and 70 small-size telescopes (SSTs) arranged in the baseline
recommended layout "S8" (following the notation in [15]). Out of all the simulated pointing po-
sitions, we selected runs with a Zenith angle of 20◦ and an Azimuth angle of 0◦ (North pointing).
Concerning the particle type, we considered diffuse, gamma-ray and proton-initiated events in a
balanced way, so both populations contribute equally to the statistics of the datasets. The selected
dataset was randomly drawn from the source dataset following the described criteria and accounts
for almost 400,000 events summing approximately 4 million images. The dataset was split into a
training dataset and a test dataset with an 8/2 ratio. We trained the single-tel and CNN-RNN models
on the following seven telescope designs proposed for CTA: the only model for LST, the two MSTs
with Davis-Cotton optics design, equipped with FlashCam or NectarCam cameras (MST-F and
MST-N respectively), the dual mirror Schwarzschild-Couder MST (MST-SC), the single-mirror
SST equipped with DigiCam camera (SST-1M), and the two dual-mirror SST designs, SST-ASTRI
(SST-A) and SST-CHEC (SST-C). More details on the different telescope designs for CTA can be

1www.cta-observatory.org
2www.egi.eu
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Events/Images LST MST-F MST-N MST-SC SST-1M SST-C SST-A All
Training 89/187 259/770 279/891 231/626 206/440 198/440 192/472 392/3827

Test 18/39 54/160 58/185 48/130 43/92 41/92 40/98 82/796

Table 1: Statistics of the datasets used in this work. The numbers represent thousands of triggered
events and total number of images generated in those events, broken down by telescope type.

Single-tel model LST MST-F MST-N MST-SC SST-1M SST-C SST-A
Validation Acc 0.701 0.762 0.784 0.795 0.781 0.753 0.733

AUC 0.786 0.849 0.869 0.878 0.862 0.828 0.818
Test Acc 0.697 0.757 0.778 0.785 0.776 0.748 0.725

AUC 0.778 0.842 0.863 0.866 0.853 0.822 0.808
CNN-RNN model LST MST-F MST-N MST-SC SST-1M SST-C SST-A
Validation Acc 0.740 0.802 0.816 0.820 0.817 0.801 0.771

AUC 0.819 0.896 0.912 0.912 0.900 0.902 0.861
Test Acc 0.732 0.800 0.816 0.812 0.809 0.796 0.771

AUC 0.815 0.890 0.909 0.902 0.893 0.898 0.862

Table 2: Accuracy and AUC values for the single-tel and the CNN-RNN models, for both validation
and test datasets, broken down by telescope type.

found in [15] and references therein. Table 1 gives a more detailed description of the statistics of
the dataset.

3.2 Benchmark results

We trained the single-tel model on 50,000 batches of 64 images each and the CNN-RNN model
on 40,000 batches of 16 events each. Both were validated every 2,500 batches. These settings were
chosen to end training approximately when validation loss stops decreasing, and thus provide an
illustration of the learning capacities of the models. Images from cameras featuring pixels arranged
in hexagonal lattices were mapped to 2D arrays using bilinear interpolation [13]. The evolution of
the accuracy, AUC, and loss as a function of number of samples run through the model can be found
in Fig. 3 for both models and telescope type. The accuracy and AUC values for the validation and
test sets are summarized in Table 2. We found an excellent match between the metrics obtained
from the validation and test sets, with the smallest and largest discrepancies being 0.6% and 1.2%
in AUC for the simgle-tel model, and 0.1% and 1.0% in AUC for the CNN-RNN model. Test
AUC values for the single-tel model range from 0.78 and 0.81 in the case of the LST and SST-A,
respectively, to the 0.84 – 0.87 range where the rest of the telescope designs are located. Test AUC
values for the CNN-RNN model are located around 0.90 for most telescope designs.

No quality cuts or data preselection were enforced during training, so the models were fed with
all images that triggered the telescopes, as opposed to the conventional analysis, where data pres-
election and quality cuts are routinely performed. In order to illustrate how data preselection cuts
affect the learning performance we trained the CNN-RNN model imposing a telescope multiplicity
cut for those events entering the training, namely, we only passed events that triggered a minimum
number of telescopes. Results on the validation set demonstrate a substantial improvement in terms
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Figure 3: Evolution of the main learning metrics for the single-tel (top panels) and CNN-RNN
(bottom panels) models as a function of number of samples and telescope type.

of AUC, boosting this metric beyond 0.90 in all telescope designs after a multiplicity cut of 4 trig-
gered telescopes per event is applied (a standard multiplicity cut in the analysis of simulated CTA
data [15]), with AUC values up to 0.98 for all MST designs and the SST-1M design.

4. Conclusion and Outlook

We have presented the CTLearn package, describing its design and configurability. We have
shown a usage example in terms of gamma-ray/cosmic-ray IACT event classification performed
by two of its built-in DNC-based models. The single-tel and CNN-RNN models were trained on
datasets of simulated CTA diffuse events. Without performing any quality cuts or data selection,
we concluded with AUC values on the test set ranging from 0.78 to 0.87 for the single-tel model
and from 0.82 to 0.91 for the CNN-RNN model, varying with the telescope design.

The flexibility and configurability of DCN-based algorithms and the rapid evolution of the field
open a seemingly infinite number of possibilities for improvement and further development. Some
of these areas where development is planned or already ongoing are: building models for full event
reconstruction, including the estimation of the energy and the arrival direction of the gamma-ray
events, possibly implemented through multitask learning; implementing models that could combine
event-level data from a heterogeneous collection of telescope types, enabling IACT-specific metrics
and loss functions; and crafting efficient tools to explore the space of hyperparameters for DCN-
based models. A comparison between IACT performances obtained with conventional particle
classification methods and DCN-based methods is currently in the works.
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