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Deep convolutional neural networks (DCNs) are a promising machine learning technique to re-
construct events recorded by imaging atmospheric Cherenkov telescopes (IACTs), but require
optimization to reach full performance. One of the most pressing challenges is processing raw
images captured by cameras made of hexagonal lattices of photo-multipliers, a common layout
among IACT cameras which topologically differs from the square lattices conventionally ex-
pected, as their input data, by DCN models. Strategies directed to tackle this challenge range
from the conversion of the hexagonal lattices onto square lattices by means of oversampling or
interpolation to the implementation of hexagonal convolutional kernels. In this contribution we
present a comparison of several of those strategies, using DCN models trained on simulated IACT
data.
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1. Introduction

Imaging atmospheric Cherenkov telescopes (IACTs) observe the Cherenkov light emitted by
cosmic rays entering the atmosphere. The light is collected by an optical system and focused onto
an ultra-rapid camera. The image of the atmospheric shower must then be analyzed to determine
the physical parameters (mainly particle type, arrival direction and particle energy) of the primary
cosmic ray. This analysis, also known as event reconstruction, is a complex task and several ap-
proaches have been developed in the past. Some well known reconstruction strategies are based
on the parametrization of the images, first attempted in [1], combined with multi-variate analysis
methods [2, 3, 4, 5], or on image template methods [6, 7, 8].

Late advances in image analysis based on machine learning, and especially using deep convo-
lutional neural networks (DCN) [9], are a promising opportunity to improve on current methods of
IACT event reconstruction, leading to better sensitivity to the gamma-ray sky. Recent works have
demonstrated the potential application of these methods for IACT event reconstruction [10, 11, 12].

However, one of the issues when dealing with images from IACTs is their shape. Cameras used
in IACTs often present non-rectangular shapes, or even non-Cartesian pixel layouts with pixels
arranged in hexagonal lattices. This is an issue when using standard convolutional algorithms
implemented in conventional libraries such as TensorFlow [13] or PyTorch [14] that have been
developed only for rectangular images with Cartesian pixel lattices.

In Sec. 2, we introduce two classes of methods to tackle the issue of hexagonal-lattice images
as input for DCNs. Sec. 3 describes the strategy for assessing the relative performance between the
proposed strategies and the tools used for this purpose. Sec. 4 contains a description of the dataset.
Finally, some results and discussion are presented in Sec. 5.

2. Hexagonal lattices as input for deep convolutional networks

Hexagonally arranged input images can be made to work with DCNs by modifying either the
inputs or the convolution algorithm. With the first approach, a transformation is applied to the input
image to morph it into a Cartesian lattice. With the second, a dedicated hexagonal convolution is
used. While the first approach is simpler to implement, the second induces no changes in the input
data that could impact the performance of DCN-based models.

2.1 Mapping methods

The aforementioned transformations can be realized by means of a mapping between input
pixels in the hexagonal input layout to pixels in the Cartesian output layout through a weighted,
linear combination. The weights can be stored in a sparse array dubbed a mapping table, with shape
(camera pixels, output x, output y), that can be pre-computed or calculated at initialization time
and then applied to the input images, ensuring that different mapping methods do not substantially
modify the training time for a given DCN-based model.

We explore five different image transformations, or mapping methods: oversampling, rebin-
ning, nearest interpolation, bilinear interpolation, and bicubic interpolation. For oversampling, we
divide every hexagonal pixel into n−by−n square pixels, assigning the charge of the new square
pixels as n−2 of the original hexagonal pixel, where typically n = 2. For nearest interpolation the
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charges of the output pixels are assigned by means of a nearest-neighbour algorithm that computes,
for each pixel in the output layout, the nearest neighbouring pixel in the input layout. For rebin-
ning, the input data is finely sampled, turned into a 2D histogram, and eventually rebinned to the
desired output dimensions.

For bilinear and bicubic interpolation we select, for each output pixel, the collection of input
pixels that will be involved in the interpolation by means of Delaunay triangulation (the three clos-
est input pixels for bilinear, the 12 closest input pixels for bicubic). Additionally, the normalization
over the mapping tables allows us to approximately preserve the input image charge after the trans-
formation (oversampling is the only method that exactly preserves the input image charge). For all
methods other than oversampling, the dimension of the output lattice is arbitrary. Fig. 1 contains
explanatory diagrams for each of the mapping methods mentioned above and Fig. 2 shows those
transformations applied over the image of a simulated gamma-ray initiated shower.

Oversampling Nearest interpolation Rebinning Bilinear interpolation Bicubic interpolation

Figure 1: Diagrams depicting all the explored mapping methods.

Hexagonal Oversampling Nearest interpolation

Rebinning Bilinear interpolation Bicubic interpolation

Figure 2: Image from a simulated gamma-ray event as seen by a camera with pixels arranged in
a hexagonal lattice (top left), and the result of applying each of the explored mapping methods on
that image.
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2.2 Indexed convolution

Another approach to solve the hexagonal lattice challenge is to apply specific convolution
operations to this pixel organization. In order to do so, we use the IndexedConv package [15],
[16] that is based on PyTorch. This package allows the user to apply convolution to any pixel
organization given that the matrix of pixel neighbours is provided. The necessary functions to deal
with hexagonal grid images are also included in the package.

3. Methodology

We assess the performance of the methods proposed in Sec. 2 through the classification of sin-
gle IACT images as gamma-ray or proton-induced events, using a labeled collection of simulated
events for both classes. After selecting a simple DCN model, we read the images, stored as unidi-
mensional arrays in HDF5 format, and transform them following the methods described in Sec. 2 by
means of the DL1-Data-Handler package; the transformed images are then fed to two independent
packages, GammaLearn and CTLearn, used to train an identical predefined model. These packages
have been developed independently and are based on different libraries, respectively, PyTorch and
TensorFlow. This allows us to cross-check the obtained results. The performances of the proposed
methods are then compared in terms of the accuracy and AUC1 metrics. Brief descriptions of the
DL1-Data-Handler, GammaLearn, and CTLearn packages follow below.

DL1-Data-Handler The datasets used for training models in this work are stored in a custom
HDF5-based file format defined by the DL1-Data-Handler (DL1DH) package [17]. This format,
built on the PyTables library, is database-like in structure, consisting of tables of structured data
which include information about telescope properties, the IACT array configuration, and the com-
plete list of simulated events and their properties, as well as the images from the detected showers.
A system of index-based mapping allows easy lookup of the variable number of telescope im-
ages associated with each shower event (and vice versa), while maintaining the efficient storage
properties of the table-based PyTables HDF5 format.

Large datasets of IACT data simulated with CORSIKA and sim_telarray [18] can be pro-
cessed efficiently into this HDF5 format using the DL1DataWriter module from DL1DH.
DL1DataWriter is built upon ctapipe [19] data containers2 and is designed to flexibly sup-
port a variety of other input file formats besides the ones described above, allowing the possibil-
ity of processing IACT data from sources other than sim_telarray. DL1 Data Writer implements
several PyTables HDF5 storage optimizations, including indexing for faster lookup and chunk-
ing/compression to minimize file sizes.

DL1DH offers the DL1DataReader module to read the HDF5 files it produces. Internally,
DL1DataReader can either map the camera images from the 1D arrays contained in the HDF5
files to 2D NumPy arrays, implementing all the mapping methods described in Sec. 2.1, or calcu-
late the pixel neighbor matrix needed for indexed convolution, described in Sec. 2.2. Additionally,
DL1DataReader implements efficient selection cuts on data and supports arbitrary event and

1Area under the receiver-operating-characteristic curve.
2The calibration of the raw sim_telarray data is performed using the available ctapipe calibration tools.
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image filtering and user-defined transformations. Data loading and pre-processing for both Gam-
maLearn and CTLearn are performed using DL1DataReader.

GammaLearn GammaLearn is a high-level Python package providing a framework to ap-
ply deep learning methods to IACT data using PyTorch. In particular, it solves some of the main
challenges scientists are facing when applying DCNs to the reconstruction of IACT data: the ap-
plication of convolutions on hexagonal images, the combination of stereoscopic images, and the
reproducibility of the experiments via configuration files. IndexedConv is fully integrated in the
GammaLearn framework. A more detailed description of this package can be found in [20, 21].

CTLearn CTLearnis a high-level Python package providing a backend for training deep learn-
ing models for IACT event reconstruction using TensorFlow. CTLearn allows its user to focus on
developing and applying new models while making use of functionality specifically designed for
IACT event reconstruction. CTLearn offers reproducible training and prediction, ensuring that set-
tings used to train a model are explicitly and automatically recorded. Further details on CTLearn
can be found in [22, 23].

DCN model We decided to work with simple models of proven particle classification capabil-
ities, taking as a reference the single-tel model in CTLearn for the image mapping strategy and a
slightly modified version of this model for the indexed convolution strategy. The single-tel model
consists of four convolutional layers with 32, 32, 64, and 128 filters and a kernel size of 3 in each
layer, interspaced by a ReLU activation layer followed by a max-pooling layer with a kernel size
(and stride) of 2; the output of the last convolutional layer is flattened and fed to a fully connected
layer with an output dimensionality of 2, the number of classes. The indexed convolution version
of the model has hexagonal convolution kernels of size 7, corresponding to the first neighbours
of the pixel to process. To fairly compare the presented mapping methods with unmapped (i.e.
hexagonal) images, the first pooling layer is removed. The mapping methods increase the size of
the images. Thus, the idea behind this adaptation is to have roughly the same number of pixels of
interest (i.e. without taking into account the artificial pixels added by the mapping methods) in the
feature maps in order to, except for the first convolution layer, apply convolution at the same level
of fineness with respect to the original pixel size. No dropout or batch normalization were set for
any of the models. We set the loss function to categorical cross-entropy and, as for the optimizer,
we chose Adam with a learning rate of 5 ·10−5.

4. Dataset

The dataset that was utilized in this work is made of Monte Carlo simulated events for the
Cherenkov Telescope Array (CTA)3. CTA is the next generation ground-based observatory for
gamma-ray astronomy at very high energies, aiming to improve on the sensitivity of current-
generation experiments by an order of magnitude and provide energy coverage from 20 GeV to
more than 300 TeV. CTA will access the full sky thanks to an installation in the Northern Hemi-
sphere (La Palma, Spain) and another installation in the Southern Hemisphere (Cerro Paranal,
Chile), featuring more than 100 IACTs in total. Events from the third large-scale Monte Carlo pro-
duction [24] were reduced, from raw to calibrated images, on the EGI4 by means of the DL1 Data

3www.cta-observatory.org
4www.egi.eu
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LST Oversampling Rebinning Nearest interp. Bilinear interp. Bicubic interp. Indexed conv.
Validation ACC 0.703±0.004 0.702±0.005 0.689±0.003 0.704±0.004 0.697±0.004 0.703±0.004

AUC 0.788±0.004 0.789±0.005 0.773±0.004 0.790±0.004 0.782±0.004 0.786±0.003
Test ACC 0.709±0.003 0.708±0.004 0.695±0.003 0.709±0.003 0.701±0.004 0.709±0.001

AUC 0.795±0.002 0.795±0.003 0.779±0.003 0.796±0.003 0.787±0.003 0.790±0.002
MST-F Oversampling Rebinning Nearest interp. Bilinear interp. Bicubic interp. Indexed conv.

Validation ACC 0.752±0.004 0.752±0.004 0.738±0.005 0.754±0.004 0.738±0.004 0.754±0.002
AUC 0.838±0.003 0.836±0.004 0.825±0.005 0.839±0.004 0.824±0.004 0.840±0.002

Test ACC 0.750±0.006 0.751±0.004 0.740±0.004 0.752±0.004 0.735±0.003 0.754±0.002
AUC 0.835± 0.005 0.835±0.003 0.824 ± 0.004 0.837±0.003 0.822±0.003 0.840±0.002

SST-1M Oversampling Rebinning Nearest interp. Bilinear interp. Bicubic interp. Indexed conv.
Validation ACC 0.772±0.005 0.774±0.004 0.760±0.003 0.777±0.005 0.769±0.002 0.777±0.003

AUC 0.853±0.004 0.854±0.003 0.839±0.003 0.858±0.003 0.853± 0.002 0.857±0.003
Test ACC 0.772± 0.003 0.773±0.003 0.760±0.003 0.777±0.003 0.771±0.002 0.776±0.003

AUC 0.852±0.002 0.853±0.003 0.838±0.003 0.858±0.002 0.853±0.002 0.857±0.002

Table 1: Average and standard deviation of the learning metrics obtained from all the training runs,
for both the validation and the test set.

Writer in DL1DH. We selected simulated data for the Southern installation, with a Zenith angle
of 20◦ and an Azimuth angle of 0◦ (North pointing), and the "S8" layout (according to the nota-
tion in [24]). Such layout consists of four large-size telescopes (LSTs), 25 medium-size telescopes
(MSTs), and 70 small-size telescopes (SSTs). Three models of MST and three models of SST were
originally simulated, but we restricted ourselves to the single-mirror MST featuring FlashCam as
its camera (MST-F) and the single-mirror SST-1M respectively. The dataset contains both diffuse
gamma-ray and proton-initiated showers with balanced statistics, accounting for nearly 400 thou-
sand events (1.4 million images, since most events trigger more than one telescope). The selected
events were randomly drawn from the source dataset and then split following a 8/2 ratio into a train
dataset and a test dataset.

5. Results

We trained the models in Sec. 3 with batches of 64 individual images (samples) randomly
drawn from the training dataset described in Sec. 4, and stopped after 50,000 batches were seen
by the model. We trained on each type of telescope independently. The training was monitored by
periodically validating the evolution of the loss function, and the accuracy and AUC metrics. The
samples used for the validation were randomly drawn from the training dataset (amounting to 10%
of it) and never used during actual training. Image mapping methods were explored with CTLearn,
while the experiments with indexed convolution were conducted with GammaLearn. Fig. 3 (left
panel) exemplifies the evolution of the AUC during training for the three types of telescopes and
all the tested methods. We performed independent training runs with different random seeds for
each explored method (10 runs for CTLearn, 5 runs for GammaLearn) to assess if the differences
in performance between methods were due to stochastic fluctuations alone. The obtained results
are summarized in Table 1 and Fig. 3 (right panel).
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Figure 3: Left: Example of the evolution of the AUC during a given training run for the LST (dash
dotted), the MST-F (dashed) and the SST-1M (solid). Ratio to oversampling method shown for
comparison purposes. Right: Average and standard deviation of the learning metrics for all runs.
Bright and pale markers depict train and test sets, respectively.

6. Conclusion and Outlook

The standard deviation of the distribution of learning metrics obtained from all the training
ranges from 0.2% to 0.5% in the validation set, almost identical in the test set, without noticeable
distinction between methods or telescope types. The values for accuracy and AUC from the vali-
dation and test datasets are compatible within errors for all methods and telescope types. Bilinear
interpolation is consistently superior, although not significantly better than most of the other meth-
ods, being consistent with indexed convolution, oversampling, rebinning and bicubic interpolation
within errors. Nearest interpolation consistently underperforms and there are strong hints that this
method could be significantly worse that the rest.

Future studies should test whether these results generalize to further aspects of IACT event
reconstruction, like the estimation of the energy and arrival direction of the simulated events. In
addition, when performing model optimization, the mapping method or the usage of indexed con-
volution could be considered as an additional hyperparameter to be explored. Eventually, the final
test would be to verify if all those results still hold when working with real data.
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