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The next generation of observatories will facilitate the discovery of new types of astrophysical
transients. The detection of such phenomena, whose characteristics are presently poorly con-
strained, will hinge on the ability to perform blind searches. We present a new algorithm for this
purpose, based on deep learning. We incorporate two approaches, utilising anomaly detection
and classification techniques. The first is model-independent, avoiding the use of background
modelling and instrument simulations. The second method enables targeted searches, relying on
generic spectral and temporal patterns as input. We compare our methodology with the existing
approach to serendipitous detection of gamma-ray transients. We use our framework to derive
the detection prospects of low-luminosity gamma-ray bursts with the upcoming Cherenkov Tele-
scope Array. Our method is an unbiased, data-driven approach for multiwavelength and multi-
messenger transient detection.
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1. Introduction

Transient astrophysical events at high energies enable the study of a broad range of funda-
mental phenomena. We present a new method, intended for the detection of such events. Our
algorithm is based on deep learning, using recurrent neural networks. It employs two complemen-
tary approaches, optimised for both model-independent and targeted searches, respectively denoted
as anomaly detection, and classification. Our approach is by design generic. The methodology is
not restricted to a specific energy regime, type of input, or time scale. In particular, it is well suited
for multiwavelength and multi-messenger searches, where different observables are combined. It
can therefore easily be adapted for many types of transient searches. We illustrate the method for
the case of serendipitous detection of low-luminosity gamma ray (γ-ray) bursts (GRBs; LL-GRBs)
with CTA, the upcoming Cherenkov Telescope Array.1

2. New detection methods

Machine learning is widely used in astronomy [1–6]. In the current study, we utilise a recurrent
neural network (RNN), made up of long short-term memory (LSTM) units. RNNs are a type of
artificial neural network, which is well suited for time series analysis [7, 8]. For a review of deep
learning and RNNs, see [9].

We utilize the open-source software, tensorflow, for our implementation [10]. The architecture
of the RNN is illustrated in Figure 1. The network accepts an input which corresponds to 25 time
steps, each representing a 1 s interval of γ-ray data. The different steps are implemented as RNN
cells. A cell is composed of a pair of LSTM layers, respectively comprising 128 and 64 hidden units
in the current implementation. The network may be decomposed into an encoder and a decoder.
The encoder receives 20 time steps as input. A potential transient signal event is then searched for
within the final 5 time steps.

Anomaly detection represents a model-independent approach, where transient events are iden-
tified based on their divergence from the expected background. This simple methodology is com-
pletely data-driven, and is able to adapt to real-time evolution of the background. Anomaly detec-
tion is decoupled from instrument simulations. It is insensitive to uncertainties on modelling of the
background, the atmosphere, or other observational artefacts which do not evolve strongly in time.
In the current example, Poissonian statistics are assumed for both the background and the signal
models.2 The background in this case is derived in-situ, using data exclusively from within the RoI
for the source. The network is trained using background-only events for all 25 time steps. The test
statistic for detecting a transient is based on the 5 decoder time steps. It encapsulates the difference
between the counts predicated by the RNN, and actual observations.

Our second method employs classification. In this case, we train an estimator to identify
transient patterns. The classification approach increases the sensitivity of specific searches, such
as for LL-GRBs. For instance, the time structure of transient events is naturally incorporated as a
part of the training process, avoiding the need for explicit modelling. Further more, simple training

1 CTA: https://www.cta-observatory.org/.
2 For brevity, we refer to the background-only hypothesis as the background model, and to the background+signal

hypothesis as the signal model.
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Figure 1: Schematic design of the RNN used in this study. The network may be decomposed into an
encoder and a decoder, respectively representing 20 and 5 time steps, τ , of LSTM units (rectangles). The
input data, φ , (blue circles) make up 4 numbers for each time step (blue hexagons), corresponding to γ-ray
counts in different energy bins, ε . The direct output of the LSTMs, ωε,τ , (red hexagons) are predictions
for event counts for each step and energy bin. The output of the RNN (diamonds) is different for each
implementation. For anomaly detection, ψ1−4, provide the predicted background counts per energy bin,
integrated over the decoder time steps. The output of the classification method, ζ , is used to derive a
probability density function.

examples are sufficient for subsequent detection of more complicated intrinsic spectra, as discussed
below. The network is trained using labelled examples of background and signal events.

The output of the RNN, ζ , is the inferred classification metric for a given event, (see Fig-
ure 2(a) below). The test statistic for identifying a signal event is derived from the distributions of
classified signal and background events, respectively denoted as ζsig and ζbck. It is defined as,

TS =−2log
(

ζbck

ζsig

)
, (2.1)

following the prescription of Ref. [11].
For additional details on these methods, see Ref. [12].

3. Transient simulations

One of the interesting source populations that might be fully unveiled in the near future is that
of low-luminosity γ-ray bursts [13, 14]. LL-GRBs are distinguished by low isotropic equivalent
luminosities, generally, 1046 < Lγ,iso < 1049 ergs−1. A sub-class of the population of long γ-ray
bursts (GRBs), they have been connected to mildly relativistic supernovae [15], and are potential
sources of of ultra high-energy cosmic rays and neutrinos [16–18]. There are indications that
the observable rate of LL-GRBs in the local Universe (redshift, z < 0.1) is high, of the order of
200Gpc−3 yr−1 [19]. They are thus appealing targets for blind real-time searches. Observation of
LL-GRBs is challenging with the current generation of ground- and space-based observatories3 [19,

3 E.g., Fermi: https://fermi.gsfc.nasa.gov/; H.E.S.S.: https://www.mpi-hd.mpg.de/hfm/
HESS/HESS.shtml; MAGIC: https://wwwmagic.mpp.mpg.de/; VERITAS: https://veritas.sao.
arizona.edu/.
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20]. However, the upcoming CTA will significantly enhance their detection prospects, allowing
γ-ray measurements down to ∼20 GeV, within a large field-of-view (FoV).

We use the following as reference events for simulating the possible γ-ray signatures of LL-GRBs:
GRBs 080916C, 090323, 090510, 090902B, and 110731A. These are bright high-luminosity GRBs,
which have been detected at high energies with Fermi-LAT (see Ref. [21] and references therein).
We assume that the GeV emission of these bursts is a simple power law (PL) extension of a Band-
like model to high energies [22]. We only consider those bursts which exhibit durations of the
order of tens of seconds. We thus exclude the population of ultra-long GRBs, which might involve
unique emission mechanisms, such as shock breakouts [23, 24].

We randomly shift the reference GRBs in redshift and luminosity to the expected ranges for
LL-GRBs, scaling the observed flux accordingly [25]. In order to simulate the signals at GeV
energies, we nominally assume a simple spectral/temporal PL model,

MPL(E, t) = k0

(
E
E0

)−Γ

t−τ . (3.1)

The prefactor and pivot energy, k0 and E0, are derived directly from the flux of the GRB. The
spectral index, Γ, and temporal decay index, τ , are randomly selected for each event, uniformly
distributed within 1.9 < Γ < 2.7 and 0.8 < τ < 2. These properties generally correspond to the
expectations for the low-luminosity population.

We generate CTA events using the open-source software, ctools, [26] simulating the North-
ern array [27], using the publicly available IRFs (version prod3b-v1). We exclusively use IRFs
optimised for 30 min observations at zenith angles of ∼20◦. The region of interest (RoI) for the
simulation is chosen as a circular region with a radius of 0.25◦. The circle is centred at the position
of the source, which is displaced by 0.5◦ from the centre of the FoV.

The inputs to the RNN corresponding to a given time step are event counts in 4 logarithmically-
spaced energy bins within 30 < Eγ < 200 GeV. The inputs to the encoder are assumed to corre-
spond to background-only counts in all cases. The input to the decoder and the output of the net-
work depend on the type of inference being used. We conduct searches over the 5 s intervals that
coincide with the beginning of bursts in the signal sample. We assume a conservative correction
for trials [28], accounting for 100 h of observations at 1 s search intervals.

We explore the effects of the extragalactic background light (EBL) on the observed spectra.
Comparing different models [29–31], we find that the EBL has little effect on the LL-GRBs in our
simulation, due primarily to their low redshift.

4. Results

Using the trained RNN in the classification mode, we derive the distributions of the classifica-
tion metric, ζ , for the background and signal samples, as shown in Figure 2(a). The corresponding
relation between the classification test statistic, TSclas, and ζ is presented in Figure 2(b). We eval-
uate our results using the detectability metric, pdet = 〈ρdet〉, defined event-by-event for

ρdet(t) =

{
0 , t < TS5σ

1 , t ≥ TS5σ

. (4.1)
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Figure 2: Parametrisation of the performance of the trained classification method. (a) Distributions of
the classification metric, ζ , for the signal and background samples, as indicated. (b) The parametrised
classification test statistic, TSclas, as a function of ζ , before and after the correction for trials. The dashed-
dotted horizontal line highlights the value, TS = 25.

Here t represents the test statistic derived for a given detection method; TS5σ is the corresponding
threshold for a 5σ detection, where e.g., for a model with a single degree of freedom, TS5σ = 25 [32].

Figure 3 shows fdet, the fraction of events with a TS value larger than a given threshold, as
a function of this threshold. We find that ctools and the anomaly detection achieve comparable
significance distributions. The two methods enable detection of a similar fraction of the events,
with slightly better performance by ctools. The performance of the classification approach is better
than that of ctools, with a relative improvement in detectability of ∼10% on average.

It is important to verify that the new detection methods do not produce spurious detections,
and that the corresponding test statistics are properly mapped to significance. We therefore evalu-
ate the different algorithms on the background sample, and compare them to the reference ctools
distribution. As shown in Figure 3(b), the anomaly detection and classification methods produce
comparable or better (lower) rates of fake detections. For the given sample of 106 background
simulations, none of the methods exceed a pre-trials TS value of 20, or a post-trials value of 1.

The dependence of pdet on the temporal and spectral indices of the simulated LL-GRBs is
shown in Figure 4. One may observe that our new methods match or improve upon the performance
of ctools. As expected, longer-lasting and harder spectra are more likely to be detected by all
algorithms.

5. Summary

In this study, we present a new approach for source detection. Our algorithm is based on
deep learning, utilising recurrent neural networks, which are ideally suited for time series analyses.
The model can be used to evaluate observation sequences of second time scales with insignificant
latency. The choice of technology is therefore particularly fitting for real-time searches.

We have developed two methods, based on anomaly detection and classification techniques.
Anomaly detection represents a model-independent approach, where transient events are identified
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Figure 3: Dependence of fdet, the fraction of events with a TS value larger than a given threshold, on
the value of the threshold. The different detections methods are compared, derived for the signal (a) and
background (b) samples, as indicated. The full lines in either figure correspond to the pre-trials test statistic.
The dashed lines in (a) represent fdet after accounting for trials, where in (b) we found fdet(TS > 1) = 0
post-trials in all cases. For clarity, the relations are truncated to the range, 1 < TS < 100, where the pre-
trials background distributions in (b) do not extend beyond TS≈ 20. The dashed-dotted vertical line in (a)
highlights the value, TS = 25.
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Figure 4: Dependence of pdet on the temporal (a) and spectral (b) indices of simulated LL-GRBs, after
accounting for trials. The shaded regions correspond to 1σ uncertainties on the values of pdet, derived using
the bootstrap method. The different detection methods are compared, as indicated.

based on their divergence from the expected background. The method is data-driven. We thus
avoid the need for background modelling, as well as for explicit characterisation of the state of the
instrument. The classification method allows one to perform targeted searches. In this case, the
RNN is trained to identify generic transient patterns. The estimator provides high detection rates
while maintaining low fake rates.
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