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Hawking radiation as quantum tunneling
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Tunneling method as a semi-classical way is discussed, that gave insight into Hawking radiations.
The approach which we have used to study is robust. It is applicable for a variety of spherically
and cylindrically symmetric solutions of Einstein’s field equations to calculate the temperature of
Hawking radiations consisting of scalar and fermionic particles. In this approach we have used
Hamilton Jacobi method for the calculation of classical action and tunneling probability for black
strings and black holes. Finally, greybody factor as a characteristic of Hawking radiation will also
be discussed.
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1. Introduction

Classically black holes are considered as such dense objects in nature that nothing could escape
out from them. The major development in this area of black hole physics occurred when Stephen
Hawking pointed out that quantum mechanically black hole could radiate [1, 2]. He argued that
due to strong gravitational field and vacuum fluctuations at the event horizon of the black hole,
a particle anti-particle pair is created. One will go inside and other will tunnel out and this will
appear to an outside observer that black hole have emitted a particle. The idea given by Hawking
was based on quantum field theory in curved spacetimes. This idea give rise to a whole new field
in theoretical physics. As yet there is no full quantum description of black holes developed, so
people have tried some semi-classical approaches to study these radiations. Initially this approach
was developed for Schwarzchild black hole [3, 4, 5]. then it was extended successfully for a wide
variety of spherically symmetric black holes [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. this extensive
litrature showed that this approach is quite robust mathematically. In this technique, we calculate
the imaginary part of the classical action that give the rate of emission and absorption of particles
across a black hole [23, 6]. Using this approach we can calculate the temperature of Hawking
radiations.

The framework available in litrature mentioned above and some of our’s work in this direction
was to study was to study Hawking radiations from spherically symmetric configurations. We have
also applied this approach to cylindrically symmetric spacetimes as well. It is worthless to mention
here that in case of charged rotating black strings, using this technique we have corrected the form
of temperature that was available for charged black strings.

The spectrum of Hawking radiations from black holes and black strings comprises of different
particles that includes scalar particles. fermions, gravitons etc. We have done this work as general
frame work that is applicable to study raditions comprises of all such particles one by one. In
[17] we have studied fermionic tunneling from black strings, in [18] we have extended this to
study Hawking radiations of fermions froms charged rotating black strings. Further in [19], we
have studied Hawking radiations of scalar particles from dilatonic black holes. In [20] we have
studied Hawking radiations of scalar particles from black strings. In [21] tunneling of gravitons is
discussed.

2. Tunneling approach

The technique was intended to be a straightforward semi-classical model that would give intu-
itive insight into Hawking radiation. Since the model is only semi-classical, it is not immediately
apparent that it would be particularly robust when applied to a large variety of spacetimes [6]. In
order to demonstrate the effectiveness of tunneling method Kerner and Mann applied this method
to a variety of different spherically symmetric spacetimes. Lemos was the first who showed that
cylindrically symmetric rotating black hole solution of Einsteins field equations with a negative
cosmological constant do indeed exist [22]. These cylindrical black holes are also called black
strings. Hawking discovered the thermal radiation of a collapsing black hole using the techniques
of quantum field theory in curved spacetime [5]. In recent years, a semi-classical derivation of the
Hawking radiation as a tunneling process has been developed by Wilczek and Parikh [3]. Zhang
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and Zhao extended this method to the Reissner- Nordström black hole [13] and Kerr-Newman black
holes [8]. Angheben et al also proposed a derivation of the Hawking radiation by calculating the
particles classical action from the Hamilton-Jacobi equations, which is an extension of the complex
path analysis of Padmanabhan et al [16]. All these approaches to the tunneling method used the
fact that the tunneling probability of the classically forbidden trajectory from inside to outside the
horizon is given by

Γ = exp
(
−2
h̄

ImI
)
, (2.1)

where I is classical action of the trajectory. There are two methods available to calculate the
classical action, the Hamilton Jacobi method and null geodesic method. A comparison of these two
methods is given by Kerner and Mann [6]. We will use the Hamilton Jacobi method to calculate
classical action of black string and their temperature at horizon. To illustrate this we present a
working procedure, how to calaculate classical action and Hawking temperature.

3. Illustration of tunneling method

We describe the method for the classical action for fermionic tunneling from any black hole.
For which we have to consider Dirac equation given by,

ιγ
µ

(
Dµ −

ιq
h̄

Aµ

)
Ψ+

m
h̄

Ψ = 0, (3.1)

where m, q and Aµ are the mass, charge and electromagnetic potential of the particle, and

Dµ = ∂µ +Ωµ = ∂µ +
1
2

ιΓ
αβ

µ Σαβ . (3.2)

Following the definitions Σαβ =−Σαβ ; when α 6= β and Σαα = 0; α = β we have

Ωµ =
1
2

ιΓ
αβ

µ Σαβ = 0. (3.3)

So
Dµ = ∂µ . (3.4)

The gamma matrices are defined from the background black hole such that they obey the following
properties,

{γµ ,γν}= 2gµν , (3.5)

where gµνare is inverse of metric tensor. Consider the ansatz [14, 7]

Ψ↑ (t,r,θ ,φ) =

(
A(t,r,θ ,φ)ξ↑
B(t,r,θ ,φ)ξ↑

)
exp
[

ι

h̄
I↑ (t,r,θ ,φ)

]
, (3.6)

Ψ↑ (t,r,θ ,z) = []A(t,r,θ ,z)ξ↑B(t,r,θ ,z)ξ↑exp
(

ι

h̄
I (t,r,θ ,z)

)
, (3.7)

where ξ↑ =

(
1
0

)
and I (t,r,θ ,z) is part of classical action. It can be split considering the sym-

metries of background spacetimes symmetries. For cylindrically symmetric spacetimes it can be
wriitten as,
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I↑(t,r,θ ,z) =−Et + lθ + Jz+W (r), (3.8)

where E is the energy of the emitted particles and W is the part of the action I↑ that contributes to the
tunneling probability. The probabilities of crossing the horizon in each direction are proportional
to [7]

Prob(out) = exp(−2ImI) = exp [−2(ImW++ ImΦ)] (3.9)

Prob(in) = exp(−2ImI) = exp [−2(ImW−+ ImΦ)] . (3.10)

While computing the imaginary part of the action, we note that it is same for both the incoming
and outgoing solutions, and so will cancel out in computing the emission probability. Now the
probability of particles tunneling from inside to outside the horizon is given by [7]

Γ ∝
Prob(out)
Prob(in)

=
exp[−2(ImW++ ImΦ)]

exp[−2(ImW−+ ImΦ)]
, (3.11)

or

Γ =
exp(−2ImW+)

exp(−2ImW−)
= exp(−4ImW+) (3.12)

Expanding the action in terms of particle’s energy [7] we get

Γ = exp(−βE) , (3.13)

where
β =

1
TH

, (3.14)

from where we get analytical expression for Hawking temperature of the radiations emitted from
background black hole.

4. Greybody factor

If one considers black holes as a thermal system, then black holes will have temperature and
entropy. This implies that black holes can radiate. As thermal systems, black holes have an asso-
ciated temperature and entropy and therefore they radiate, and the radiations are called Hawking
radiations. The emission rate in a mode of frequency ω , at the event horizon, is given by

Γ(ω) =

(
1d3k

eβω ±1(2π)3

)
. (4.1)

In this relation β is used to denote the inverse of the Hawking temperature and minus (plus) sign
is for bosons (fermions, respectively). This formula for emission rate can be generalized for any
dimension and it is valid for massive and massless particles. Spectrum of the radiations from black
holes at the event horizon is perfectly same as that of the black body spectrum. Due to this, it gives
rise to the information loss paradox. The important fact is that the geometry of the spacetime around
a black is non-trivial. This non-trivial geometry modifies the spectrum of Hawking radiations. In
fact, the non-trivial geometry acts as a potential barrier which allows some of the radiations to
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transmit and reflect the rest to the black hole. The mathematical expression that summarizes all the
above discussion is

Γ(ω) =

(
γ(ω)d3k

eβω ±1(2π)3

)
, (4.2)

where γ(ω) is known as the greybody factor, which is frequency-dependent.
Physically, greybody factor originates from an effective potential barrier by a black hole space-

time. For example, the potential barrier for massless scalars from Schwarzschild spacetime is

Ve f f (r) =
(

1− rH

r

)(rH

r3 +
l(l +1)

r2

)
, (4.3)

where rH is the horizon’s radius and l is angular momentum of the scalar. It is this potential which
transmits or reflects radiations from black holes. Therefore, it gives rise to the frequency dependent
greybody factor.

Greybody factor not only accounts for the deviation of Hawking radiations from black body
spectrum, but is also important in working out energy emission rates and is also relevant for com-
puting the partial absorption cross sections of black holes.

5. Conclusions

Hawking radiations can be viewed as a quantum tunneling process and should contain contri-
butions of both scalar particles and fermions. Kerner and Mann have presented fermion’s radiation
for Rindler spacetime and for other spherically symmetric black holes. In order to extend our under-
standing on Hawking radiations, we have discussed it as a general framework to study radiations
emitted from spherically as well as cylindrically symmetric black holes. An extensive literature
in this regard is cited, which shows the universality and effectiveness of this technique. This is
more convenient way to analyse the Hawking radiations. Spectrum of Hawking radiations differs
from that of blackbody radiations due to a frequency dependent factor known as greybody factor.
Physical origin of greybody factor is also discussed in this paper.
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