Main Image
Volume 358 - 36th International Cosmic Ray Conference (ICRC2019) - NU - Neutrino
Neutrinos from Primordial Black Hole Bursts
P. Dave,* I. Taboada
*corresponding author
Full text: pdf
Pre-published on: 2019 July 22
Published on:
Abstract
Primordial Black Holes (PBHs) are candidates for dark matter as well as ultra-high energy cosmic rays. PBHs are speculated to exist over a large range of masses, from below $10^{15}$ g to $10^3$ M$_\odot$. Here we search for PBHs with an initial mass of $\sim 10^{15}$ g. Hawking radiation by black holes of this initial mass predicts their evaporation at present time. PBHs are expected to produce copious amounts of high-energy neutrinos and gamma rays right before evaporating. Gamma-ray instruments such as Fermi, VERITAS, HAWC, HESS, and Milagro have conducted searches for evaporating PBHs during their last second to a year of existence. They are able to detect bursts from PBHs in a range of $10^{-3}$ to $0.1$ pc. We present sensitivity to PBH evaporation using one year of neutrino data by IceCube. In these proceedings, we detail the changes to adapt IceCube's standard neutrino flare search, aka time-dependent point source search, into one that is appropriate for evaporating BHs. These proceedings serve as proof of concept for a first-ever search for evaporating PBHs using neutrinos that can use 10 years of IceCube data.
Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.