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Recent results from IceCube regarding TXS 0506+056 suggest that it may be useful to test the
hypothesis of multiple neutrino flares, where each flare is not necessarily accompanied by a
corresponding gamma-ray flare. An untriggered, time-dependent, source-stacking search would
be optimal for testing this hypothesis, however such an analysis has yet to be applied to the full
duration of IceCube data. Here, we discuss one possible way of constructing such an analysis,
with a global test statistic obtained by summing the individual test statistics associated with
each signal-like flare in the sample. This has the additional advantage of assessing the time
structure of each source when running the analysis over a source catalog. We show that, for
a signal consisting of many small flares, this style of analysis represents a significant increase
in discovery potential over both the existing single-flare fit and the time-integrated stacking
methods. Potential source catalogs are examined in combination with this method, including the
possibility of a “self-triggered” catalog consisting of the locations of the highest energy northern
sky events in the IceCube sample.
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1. Introduction

Recent results from the IceCube Neutrino Observatory suggest the possibility of multiple un-
triggered neutrino flares from the same object [1][2]. The method used in [1] tests the hypothesis
of multiple flares for TXS 0506+056 by combining the single, most significant flares found over
different pre-defined data taking periods. While this method works well in the case that the data is
dominated by a single, significant neutrino flare, it is not sensitive to the case of multiple, similarly-
sized flares produced by the same source. Here, we present a method specifically tailored to testing
the hypothesis that a particular source flares many (>1) times. We will refer to this new method as
"multiflare stacking". The primary difference between multiflare stacking and the existing methods
[3], is that multiflare stacking attempts to fit all flares in the sample, not merely the largest flare.
This method is particularly well suited for testing the hypothesis of many, moderate-to-weakly
flaring sources.

2. Description of the method

Conceptually, multiflare stacking can be broken down into the following steps:

1. Create a set of "test windows", defined by a start and stop time. This is done by taking all
possible pairs of events that pass a pre-defined weight threshold.

2. Calculating a test statistic associated with each test window, describing the hypothesis that
that particular window was a flare produced by the source. Discard all windows with test
statistic below some threshold: These windows are "background-like", while the remaining
windows (with test statistic > this threshold) are "signal-like".

3. For the remaining signal-like windows, remove windows that overlap with a window with
higher test statistic. Sum the remaining T S j to obtain a multiflare test statistic, T̃ S, associated
with a particular source.

4. (For the case of considering a source catalog) Do a binomial test to optimize for the number
of sources to stack together.

2.1 Create a set of "test windows", defined by a start and stop time.

For the purpose of multiflare stacking, we will restrict ourselves to only considering flares
which begin and end on an event. This means that for a data sample containing N events, there
are at most N(N− 1)/2 possible flares that can be formed. We will refer to these possible flares
(defined solely by a start and stop time) as "test windows".

In practice, due to the large number of events, steps 2-4 from the above are computationally
infeasible if all N(N − 1)/2 test windows are considered, so we reduce the number of possible
windows by applying a cut to the number of events prior to forming test windows: only events
with S/B ratio greater than some threshold will be considered for forming test windows. Here,
S/B refers to the ratio of the spatial and energy components of the signal and background PDFs
defined in equations 4 and 8 of [3]. This significantly reduces the number of test windows to a
more manageable number. This process is shown in Figure 1. This S/B event selection is only
used for the test window determination. For the actual analysis all N events will be used.
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Figure 1: The process of selecting test windows for which a test statistic will be calculated. Test
windows may overlap, and windows are only formed from events passing the S/B threshold. Note
that while the S/B threshold is applied to determine which windows will be considered, all events
(regardless of S/B value) will be used when calculating a test statistic.

2.2 Calculating a test statistic associated with each test window

For each of the test windows defined in section 2.1, we calculate a flare test statistic (T S j

associated with that specific flare hypothesis (that the flare starts at the time of the first seed event,
and ends at the time of the second seed event). We identify individual test windows with the
index j. This flare test statistic is of the form presented in section 3 of [3], with the modification
that we use a box-shaped flare hypothesis instead of a gaussian. . Signal PDFs (Si j where the
index i indicates the event) are defined as in equations 2.1-2.3. Events (identified by the index i)
are defined by a arrival direction (~ri), energy (Ei), and time (ti). The signal PDF is composed of
a spatial term (Ri j(~ri)), defined by the location ~ri and event angular error σi. The energy PDF,
E (Ei j|γ j), describes the probability of obtaining an event energy (Ei) from a signal event produced
by a flare with spectrum γ j, and is a function both of γ j and detector effective area. Note that we
include a j index with the flare spectrum, γ j, as this method will fit the spectrum of each flare
individually. In the definition of the temporal PDF (equation 2.3), H(t), is the Heaviside function,
∆Tj is the test window duration, and tstart

j and tend
j are the start and end time of the jth test window.

Si j = Ri j(~ri)×E (Ei|γ j)×Ti j(ti) (2.1)

Ri j(~ri) =
1

2πσ2
i

exp[
−r2

i

2σ2
i
] (2.2)

Ti j(ti) =
H(tend

j − ti)H(ti− tstart
j )

∆Tj
(2.3)

The background PDF is defined in equation 2.4. Similar to the signal PDFs, the background
energy and spatial PDFs are functions of the detector effective area, while the temporal background
PDF, 1

∆Tdata
, is simply a uniform distribution over the entire data taking period.

Bi = Rbg(~ri)E (Ei|Atmν)
1

∆Tdata
(2.4)
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We can then define our test window likelihood and associated test statistic, shown in equations
2.5 and 2.6. Here, N refers to the total number of events in the sample (without the S/B requirement
mentioned above), and ns j is the number of signal events contained within the jth flare. The flare
likelihood (equation 2.5) can be minimized with respect to ns j and γ j to obtain the flare test statistic
in equation 2.6, where n̂s j and γ̂ j refer to the best-fit values resulting from minimizing equation
2.5. This test statistic describes the hypothesis that the jth flare is in fact a signal flare. Unlike
the standard method, we do not minimize our likelihood with respect to the flare parameters ∆Tj,
tend

j or tstart
j , as instead we seek to describe the hypothesis of a flare with these parameters fixed to

specific values.

L j(ns j,γ j) =
N

∏
i=1

(
ns j

N
Si j +(1−

ns j

N
)Bi) (2.5)

T S j =−2log
[

∆Tdata

∆Tj
×

L j(ns j = 0))
L j(ns j = n̂s j,γ j = γ̂ j)

]
(2.6)

The ∆Tdata/∆Tj term is intended to correct for the fact that there are many small windows that
formed in section 2.1, so we penalize their test statistic to account for the additional trials associated
with short test windows. Note that while test windows are defined by events that pass the threshold
in step 1, the i index in equation 2.5 runs over all events, not only those which pass the S/B cut.

This process can then be repeated for every test window defined in section 2.1. The end result
of this is a list of flares (start/stop times), and corresponding T S j’s. We then discard all windows
with T S j < 0. These windows are "background-like", while the remaining windows, with T S j > 0
are "signal-like". For the remaining steps we will work only with the list of "signal-like" windows.

2.3 Removing overlapping windows

Individual events should not be able to contribute to more than one flare. To account for this,
we employ the following decorrelation procedure: test windows are ordered by descending T S j

(calculated above). Iterating down the list, discard all test windows that overlap in time with a
different test window with a larger T S j. The result of this step is a list of completely decorrelated
(non-overlapping) test windows. This list can be interpreted as a "neutrino flare curve", describing
the set of neutrino flares associated with a particular source location. Figure 2 shows an example
flare curve generated by this procedure.

We can now define the "global" test statistic, T̃ S to be the sum of all the T S j remaining after
this decorrelation procedure, as in equation 2.7, where the sum in equation 2.7 is only over non-
overlapping flares. The best fit value for the number of signal events, ñs, can be obtained in a
similar manner by simply summing up the best fit n̂s associated with all the non-overlapping flares.

T̃ S = ∑
j,T S j>0

T S j ñs = ∑
j,T S j>0

n̂s j (2.7)

Figure 3 shows the best fit ñs versus the injected value for both this method and the traditional
single flare fit. For a signal composed of many flares, multiflare stacking recovers the injected
signal much more accurately.
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Figure 2: Multiflare stacking applied to a single source

(a) Top: Events that pass the S/B threshold cut
for generating windows, mentioned in section 2.1,
for a source located at (ra, dec) = (77.45◦, 5.61◦).
This source contains three injected flares, centered at
MJD=55246.3, 55807.4, and 57632.7. Bottom: The
resultant flare curve calculated by applying multiflare
stacking to this source. The single flare method fits
only the flare at MJD = 55246.3 (with TS = 22.66),
while the multiflare method fits all flares together,
with a global test statistic of T̃ S = 60.52.

(b) The background test statistic distributions for a
single source, located at declination = 5.61◦. The
background multiflare test statistic distribution is
shown in blue, while the single flare method is shown
in orange. The vertical lines represent the test statis-
tics associated with the flare curve in figure 2a. The
single flare p-value for this source is 4.9 × 10−4

(3.29σ ), while the multiflare p-value is 8.0× 10−6

(4.7σ ).

Figure 3: Fit versus injected values for the number of signal events (ns), for both the existing single
flare method (left) and the multiflare method presented in these proceedings (right). In both cases
a signal composed of many flares was injected, with flare intensities drawn according to the power
law distribution introduced in section 3. Unsurprisingly, multiflare stacking is much more capable
of recovering the number of injected signal events for a signal of this form.

2.4 Procedure to treat multiple sources from a catalog

We can easily extend this process to a source catalog, rather than a single source. The global
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test statistic is simply given by equation 2.8, where here the sum runs over all sources in the source
catalog.

T̃ Sall = ∑
sources

T̃ S (2.8)

For large source catalogs, if only a few sources are "truly" flaring, they may be overwhelmed
by the large number of background sources. This can be remedied by "binomial stacking" of
sources. Instead of stacking the multiflare test statistic for all sources (equation 2.8), we instead
employ the following procedure to optimize the number of sources to stack (k). For a given data
set, the sources are ordered by their multiflare test statistic, T̃ S. A p-value for k = 1,2,3, ...Nsrcs is
calculated, and subsequently the k that produces the minimum p-value is selected. An additional
trial factor is attached from a newly created background test statistic distribution, corresponding
to the number of stacked sources, similar to the process described in [4]. The additional power
obtained by stacking in this manner outweighs the penalty associated with the trial factor, resulting
in an increased discovery potential (see section 4).

T̃ Sall =
kbest

∑
m=0

T̃ Sm (2.9)

3. Characterizing an Injected Signal

In order to test the performance of multiflare stacking, we require a description of the intensity
distribution of observed flares (i.e. how many events are in each flare, and how many flares there
are total). For flares of intensity I, the number of flares with that intensity N(I) can be described by
a power law with a lower cutoff (equation 3.1). This is primarily motivated by the distribution of
gamma ray flares found in [5]. Note, however, that this is a descriptive power law, not a predictive
power law. The parameters here are intended as a flexible way to describe a wide array of what
the distribution of flares may actually look like. We make no claims as to what these parameters
actually are beyond the existing limits calculated in section 4.

N(I) = Am(
α−1

Io
)(

I
Io
)−α (3.1)

This power law is specified by three parameters:
• Am describes the overall power law normalization (how many flares exist in the sample)
• Io describes the lower intensity cutoff. This is a parameter that scales with the flux, but

roughly corresponds to the minimum flare size.
• α describes the number of larger versus smaller flares. A larger value of α corresponds to

proportionally more smaller flares, while a smaller α will produce more larger flares.

4. Catalogs and Discovery Potential

In this section we will explore the 3σ discovery potential of multiflare stacking applied to
two different catalogs. We define the 3σ discovery potential to be the flare intensity distribution
normalization (Am) required for 50% of the injected signal multiflare test statistics to be higher
than the 3σ threshold calculated from the background multiflare test statistic distribution. Under
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this construction, the 3σ discovery potential is a surface in the space spanned by possible values
of Am, α and Io. For plots in this section, we have chosen to show slices of this space with fixed
α (α = 3), plotting the discovery potential Am as a function of Io. Since we have yet to observe
a flaring neutrino source, the allowed values of α are unconstrained, we have simply chosen a
specific value to illustrate a region where multiflare stacking is relevant. This is purely for the
purposes of demonstration, as this method has significant discovery potential for a wide range of
injected values of α .

4.1 Catalog 1: The Top 500 Flux Fermi 3LAC Blazars

Due to previous results of time-integrated stacking searches applied to Fermi 2LAC blazars
[6], it may be beneficial to test the hypothesis of multiple flares for the catalog of Fermi 3LAC
blazars. We select the top 500 flux sources in this catalog purely due to computational limitations,
but otherwise include no additional cuts.

The currently existing limits for this catalog are plotted in blue in figure 4a, and can be cal-
culated analytically by integrating equation 3.1. The "single flare limits" correspond to performing
a binomial test on the Fermi 3LAC blazar catalog (a 3 sigma discovery corresponds to roughly 5
pre-trial 3-sigma injections), as in [4]. The "time integrated limits" correspond to the condition
that there are not more events in the sample than are allowed by the existing time-integrated flux
limits reported in [6].

(a) The 3σ multiflare discovery potential for a cata-
log of Fermi 3LAC blazars. The dashed line corre-
sponds to the limits set in [6].

(b) The existing limits and 3σ discovery potential for
the "self-triggered" catalog described in section 4.2.
The dashed line in this plot refers to the diffuse fit
done in [7].

Figure 4: Multiflare discovery potential. Injected flare durations are fixed to 100 days, and the
injected events follow an E−2.0 spectrum. Note that the discovery potential improves a small, but
significant amount with the inclusion of binomial-style stacking (section 2.4). In both figures, the
solid blue line corresponds to the observation of a single, 100 day flare with 13 events.

Figure 4a shows the 3σ discovery potential for applying multiflare stacking to this source cat-
alog. Note that the binomial-style stacking method proposed in section 2.4 significantly improves
the discovery potential, improving it beyond the currently existing limits set by [6]. Also note that
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for large values of Io, the discovery potential of the single flare fits is expected to exceed that of
multiflare stacking, since this region corresponds to having only 1-2 large flares in the sample. For
very small values of Io, the time integrated method becomes superior, since in this region "flares"
are often merely a single event. Multiflare stacking is primarily sensitive to the middle region,
where there are a moderate amount of medium-sized flares.

4.2 Catalog 2: High-Energy IceCube Events

Based on the diffuse fits to the atmospheric and astrophysical spectrum in [7], we can develop
a "self-triggered" catalog of source locations consisting of the highest energy events in the sample.
This is similar in spirit to the catalog considered in [8]. For this catalog, we test the locations of
all events in the sample with energy proxy > 200 TeV. This threshold is chosen because above 200
TeV, we expect 50% of events to be astrophysical in origin [7]. These "source" events are removed
from the sample prior to calculating a test statistic to avoid signal contamination.

This catalog consists of 32 high-energy events, though notably does not include IC170922A,
as this data sample only extends up to 2016. Events are well localized, with the majority of events
having reconstructed angular error < 1◦, so these locations can be considered to be point-like source
candidates.

The discovery potential for this catalog is shown in figure 4b. The benefit of the binomial
test is smaller in this case, due to the size of the source catalog, however multiflare stacking still
represents a significant improvement over both the single flare and time-integrated methods.

5. Concluding Remarks

We have presented a method for testing the hypothesis that neutrino sources flare multiple
times ("multiflare stacking"). This is done by combining information from fits to all flares in the
sample. Using an injected signal characterized by a power law, we explored the discovery potential
for this method for two source catalogs: Fermi 3LAC blazars and a "self-triggered" catalog com-
posed of the locations of high energy IceCube events observed between 2009 and 2016. For both
of these catalogs, multiflare stacking represents a significant improvement over existing methods
for a signal composed of many moderately-sized flares.
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