Main Image
Volume 358 - 36th International Cosmic Ray Conference (ICRC2019) - NU - Neutrino
Trinity: An Air-Shower Imaging System for the Detection of Ultrahigh Energy Neutrinos
A.N. Otte,* A.M. Brown, A.D. Falcone, M. Mariotti, I. Taboada
*corresponding author
Full text: pdf
Pre-published on: 2019 July 22
Published on:
Abstract
Efforts to detect ultrahigh energy neutrinos are driven by several objectives: What is the origin of astrophysical neutrinos detected with IceCube? What are the sources of ultrahigh energy cosmic rays? Do the ANITA detected events point to new physics? Shedding light on these questions requires instruments that can detect neutrinos above $10^7$ GeV with sufficient sensitivity - a daunting task. While most ultrahigh energy neutrino experiments are based on the detection of a radio signature from shower particles following a neutrino interaction, we believe that the detection of Cherenkov and fluorescence light from shower particles is an attractive alternative. Imaging air showers with Cherenkov and fluorescence light is a technique that is successfully used in several ultrahigh energy cosmic ray and very-high energy gamma-ray experiments.
We performed a case study of an air-shower imaging system for the detection of earth-skimming tau neutrinos. The detector configuration we consider consists of an imaging system that is located on top of a mountain and is pointed at the horizon. From the results of this study we conclude that a sensitivity of $3\cdot10^{-9}$ GeV cm$^{-2}$s$^{-1}$sr$^{-1}$ can be achieved at $2\cdot10^8$ GeV with a relatively small and modular system after three years of observation.
In this presentation we discuss key findings of our study and how they translate into design requirements for an imaging system we dub Trinity.
Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.