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1. Introduction

Neutrino astronomy is a field of particle astrophysics that seeks to investigate distant phenom-
ena through the detection of neutrinos. As weakly interacting particles, neutrinos are able to travel
cosmic distances directly from their source, thus providing a unique means for exploring parti-
cle sources in the distant universe [1, 2]. The field of ultra-high energy (UHE) neutrino astronomy
probes the most energetic events at above 1018 eV. Due to the extremely low neutrino cross-section,
UHE neutrino detection experiments rely on massive detector volumes, such as the Antarctic ice, to
detect when a neutrino directly strikes an atom. The collision of a neutrino within the ice produces
Askaryan radiation. Askaryan radiation is of particular interest, as it produces radio signals with
attenuation lengths in pure ice on the order of 1 km [3].

The GENETIS (Genetically Evolving NEuTrIno TeleScopes) collaboration focuses on using
genetic algorithms (GAs) to improve the sensitivities of Askaryan radiation-based detectors, such
as those used by ANITA, ARA, and ARIANNA. These experiments utilize various types of anten-
nas to detect the neutrino induced radio waves [2, 4, 5]. GAs are computational techniques that
mimic the mechanisms of biological evolution by creating populations of potential solutions to a
defined problem and then evolving the population over multiple generations to find optimized solu-
tions [6, 7]. Our research seeks to improve experimental sensitivities with consideration to current
constraints in geometry of antenna devices deployed in the ice, and the signal characteristics of
neutrino generated Askaryan radiation.

The proceedings describe some background information regarding GAs, as well as three main
GA procedures for evolving antennas: (1) evolving simplified paperclip antennas, (2) the An-
tenna Response Evolution Algorithm (AREA), and (3) the Physical Antenna Evolution Algorithm
(PAEA). Paperclip evolution is working towards evolving highly directional antennas. AREA is
focused on evolving gain patterns that are better suited for neutrino detection. In PAEA, the phys-
ical properties of the antenna are evolved for improved neutrino sensitivities. In the future, these
procedures could be combined, so that the evolution of the physical antennas produce a desired
antenna response which itself is derived from an evolutionary algorithm.

2. Genetic Algorithms

GAs are a type of evolutionary computation used to discover one or more sets of values that
provide a best-fit to a large parameter space [6]. The resulting, multiple generation convergence
can evolve solutions for problems that would have otherwise been difficult or not possible through
more traditional techniques [6, 8].

Each generation consists of a population of individuals, each of which is tested for its output
against a predefined set of goals. To quantify the performance of an individual, a fitness function is
created to generate a fitness score by comparing the genes of an individual to the optimal or desired
goals. Genes hold characteristics of individuals. Each generation of individuals has the potential,
but is not guaranteed, to improve upon the prior [9].

The GA workflow is presented in Figure 1. First, a population of individuals is generated, each
with randomly generated genes. Each individual is tested through the fitness function to generate
a fitness score. A selection method is implemented to decide which individuals, called parents,
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will be used in creating the next generation. An operator then uses the parents’ genetic code to
create offspring individuals for the next generation. The fitness test is applied to each individual,
generating the new fitness scores. This process is iterated until a specified fitness score threshold is
surpassed by one or more individuals, or until a specified number of generations have passed.

GAs often combine different selection methods and operators. The two most common se-
lection methods are roulette and tournament selection. In roulette selection, the probability of an
individual being selected is proportional to the individual’s fitness score. In tournament selection,
individuals are randomly placed into groups (tournaments) and compared by fitness scores. The
individual(s) with the highest fitness score in each tournament are then selected [10]. Additionally,
two primary operators exist: crossover and mutation. In crossover, individuals swap genes to form
offspring. In mutation, genetic diversity is introduced to avoid convergence to an incorrect solution
by randomly altering genes [11].

Figure 1: General GA evolution procedure.

3. Paperclip Antenna Evolution

GAs can be used to design antennas with desired gain patterns. An initial investigation of this
process was conducted on a simple, segmented antenna design, modeled on the antenna design
evolved for NASA satellite communications in 2006 [12]. The following provides the overview
and results of our investigation.

The antenna geometry consists of multiple, unit-length segments connected sequentially. Due
to the segmented and bent nature of the resulting antenna, we call this design a “paperclip antenna.”
Each segment can point toward any direction, thus, the genes that define each individual are the
rotation angles between 0 and 2p about the three Cartesian axes for each segment. The final
individual geometry consists of a number of randomly rotated unit vectors attached tip to tail. The
rotations are initially uniformly distributed from 0 and 2p .

While a number of different fitness functions were explored, one in particular directed the evo-
lution of the antenna to arrive to the desired curl shape, as illustrated in Fig. 2. This “curl” function
was sensitive to changes in the initial parameters, complex in that all of the evolved rotations had
to work together to produce the final shape, and consistent across multiple runs given 200 or fewer
generations.
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The curl fitness function calculates the cross-product between adjacent vectors, ~si and ~si+1.
The fitness score, F , is then defined by the equation below:

F =
n�1

Â
i=1

~si ⇥ ~si+1

Defined this way, the angle between neighboring antenna segments is preferred to be ninety degrees
and oriented counterclockwise in the x-y plane.

(a) (b)

Figure 2: (a) Example of a partially evolved paperclip antenna. Note the general counterclockwise spiral. (b)
The best fitness score of 100 paperclip antennas over 200 generations evolved to produce a counterclockwise
curl. The GA was performed for various number of segments.

The paperclip antennas were evolved over 200 generations composed of 100 individuals using
a tournament selection method, with both mutation and crossover operators. This was performed
for antennas with various numbers of segments. The results of this analysis are presented in Fig. 2,
which shows the highest scoring designs, per segment, per generation. As shown, fewer segments
results in achieving a higher fitness score over fewer generations. A higher quantity of segments
increases the complexity of the antennas, thereby resulting in a slower approach to the desired
solution.

4. Antenna Response Evolution Algorithm

Designing beam patterns by hand can be extremely difficult. AREA is an algorithm developed
for the evolution of neutrino detecting, RF antenna responses. There are a number of known,
desired properties of antennas, such as sensitivity to specific frequencies, sensitivity to the active
volume, and reduced sensitivity to the inactive volume. AREA employs these properties over gain
or phase to evolve antenna beam patterns to optimized solutions.

AREA uses a linear sum of 13 azimuthally symmetric, spherical harmonic functions to model
the gain or phase pattern of an antenna. Since we are assuming azimuthal symmetry, we only
consider spherical harmonics with the magnetic quantum number m = 0. This allows the convo-
luted form of a gain or phase pattern to be described with the 13 coefficients a` (the orbital angular
momentum quantum number) of the spherical harmonics.
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AREA generates an initial population in which each individual contains a set of randomly
generated genes. These individuals are evaluated by the fitness function, to produce a fitness score.
The next generation is created through four different selection method and operator combinations.
Half of the population is generated through crossover of two parents chosen through roulette se-
lection. One-sixth is generated by crossover of two parents selected from two 6-way tournaments.
The remaining population is generated through a Gaussian mutation operator of single individuals,
with one-sixth of the total population selected through roulette selection and the remaining one-
sixth coming from a 6-way tournament. The fitness scores of the new population are evaluated.
AREA repeats this process until it reaches a specified number of generations [13].

Table 1: Summary of the selection methods and operators used in the AREA procedure
Fraction Selection Method Operator

1/2 Roulette Crossover
1/6 Tournament Crossover
1/6 Roulette Mutation
1/6 Tournament Mutation

The fitness score is based on simulated neutrino detection rates for various azimuthal angles.
AREA uses a simplified version of AraSim. Developed by the ARA collaboration, AraSim is a
Monte Carlo neutrino detection simulator which models neutrinos with energies between En =

1017 �1021 eV and within a 3-5 km radius of the detectors [14]. The redesigned tool, AraSimLite,
simplifies AraSim’s fitness function by omitting the simulation’s ray-tracing, noise waveforms,
signal polarization, and ice modeling, thereby reducing the computational run time[13].

AREA uses the effective ice volume, the volume of ice that the detector is sensitive to. AraSim
and AraSimLite model this effecive ice volume as the inherent fitness function. This is given by
Ve f f =

Vgen
Ngen

Si,trigwi, where Ve f f is the effective volume, Vgen is AraSimLite’s neutrino interaction
scan volume, and Ngen is the number of neutrino interactions. Si,trigw is the sum of the weights,
or probabilities, of neutrino interactions over the range of energies that trigger the detector. Each

weight is given by w(E) = ’N
i=1 e

li
Lint,i(E) . The fitness score is then the sum of these weights:

FAREA =
N

Â
i=1

wi(E),
g(qi)

R2
i

> Pth.

Here, qi is the angle between the zenith and the vector from the antenna to the event, g(qi) is
the gain at that angle, Ri is the distance to the event. The weights are only counted in the fitness
function and fitness score if the ratio of the gain to the square of the distance to the event ( g(q)

R2
i

),
representing the attenuation of the signal, exceeds a predetermined threshold Pth. This threshold
has been chosen as 150 m�2, the point where the fitness score for an isotropic radiator would reach
half of its maximum possible fitness score [13].

The results of an initial AREA test are presented in Fig. 3. On the left, the change in the
maximum and average fitness scores of a population are given over 500 generations, showing a
convergence in less than 100 generations with minimal improvement thereafter. On the right, a
final evolved radiation pattern is shown. The AREA procedure demonstrated the ability to evolve
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Figure 3: Results of an example AREA procedure for energy 1018 eV: (a) The change in maximum and
average fitness score over 500 generations; (b) The radiation pattern with the best fitness score after 500
generations

radiation patterns that matched the expected geometry of an antennae designed to detect neutrinos
from a particular arrival direction.

5. Physical Antenna Evolution Algorithm

The goal of this investigation is to evolve physical antennas to boost neutrino sensitivity. PAEA
evolves antenna geometries by means of fitness scores based on the simulation of antenna perfor-
mance. For physical antenna evolution, a seed generation of possible antenna designs is initialized,
with random values picked from a Gaussian distribution. The commercial antenna simulation soft-
ware, XFdtd is then used to model the associated frequency-dependent response patterns. Those
antenna response patterns are input into Monte Carlo neutrino simulation software in order to pre-
dict the effective volume of ice the antenna is able to measure. The fitness score for each antenna
is fed back into the GA that evolves the geometry of the next generation. This loop continues until
a design with acceptable parameters and measurement volume is reached. The PAEA process is
generic and can be adapted for many types of antenna designs

In the current version of PAEA, we consider a bicone antenna design as shown in Fig. 5. The
bicone design consists of two identical truncated cones sitting back-to-back with a fixed separation
distance of 2.8 cm. The parameters of the design that are subject to evolution are: the minor radius
of the cones, the length of the cones, and their opening angle.

The evolution of the parameters is conducted through a genetic algorithm described below that
draws from the existing body of work in GAs [15, 16]. The fitness score attributed to each bicone
design is the effective volume of the ARA detector as simulated by AraSim [13, 14].

The GA uses the fitness scores from the individuals in each generation to produce the next
generation of individuals using a two step process. The first step uses roulette selection whereby
two selected individuals are chosen at random as parents to produce the next generation. Their
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Figure 4: A flow chart of the PAEA procedure with a detailed inset of the fitness score procedure.

Table 2: Summary of the mean and standard deviation for the newly selected parameters drawn from a
Gaussian distribution

Parameter Mean Standard Deviation

Inner Radius 2 cm 0.25 cm
Length 50 cm 15 cm
Angle p/4 p/6

genes are randomly selected to create each individual offspring. The second step in producing
the next generation improves genetic diversity by introducing mutations to 60% of the offspring
generated in the first step. This is done by selecting new parameters drawn from a Gaussian distri-
bution whose width is set by the user. The mean and standard deviation of the distribution for each
parameter is summarized in Table 2.

Figure 5: Geometry of bicone antenna showing the genes of length, opening angle and minor radius, and
separation distance.

Some initial results of PAEA are presented in Fig. 6. In order to test the performance of
the algorithm in the presence of local and global maximums, we consider a fitness function that
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(a) Generation 0 (b) Generation 5 (c) Generation 20

Figure 6: Example of PAEA algorithm results at (a) Generation 0, (b) Generation 5, (c) Generation 20.
The fitness score is shown in contour plot. Individuals, shown as red dots, began spread over a wide range,
evolved to group near the global maximum.

is the sum of two displaced Gaussian distributions of different heights. For this test, we take two
parameters that we call length and radius. In the first generation (Generation 0), the 20 individuals,
shown as red dots, covered a region of parameter space that contained both Gaussian distributions.
By the 20th generation, 19 of the 20 individuals were within 2s of the the global maximum, despite
some individuals finding the local maximum in earlier generations.

6. Conclusions

These proceedings present the initial results of an investigation into the use of GAs to evolve
antennas for UHE neutrino detection. Paperclip antennas were successfully evolved into various
geometric patterns, one of which was discussed in the body of this research. It is demonstrated
that an increase in the complexity of the design, as defined by the quantity of segments, results in
a lower, initial fitness score with subsequent, limited improvement in the following generations.
Future investigations could include using XFdtd to evolve highly directional paperclip antennas.

The AREA procedure was developed to evolve antenna gain patterns to boost directional sen-
sitivity. A GA was developed to generate optimal gain patterns based on the AraSimLite simu-
lation. Candidate solutions indicate that downward directed antennas should be used in the ARA
experiment. Current efforts are focused on using a more advanced neutrino simulation software to
construct improved AREA fitness scores and more accurate, resulting gain patterns.

Finally, the PAEA procedure was used to successfully evolve bicone antenna parameters. Im-
provements to minimize computation time is a focus of ongoing investigation, thereby enabling
higher quality gain patterns for neutrino detection. Future research will focus on combining the
AREA and PAEA processes for a two-step procedure. AREA would be used to extract optimized
antenna response patterns inserted into PAEA to evolve physical antennas. These proceedings
demonstrate the potential for GAs to improve antenna beam patterns and antenna geometries, which
could be applied to neutrino detectors. Future avenues of research include evolving different types
of antennas, array geometries, and trigger systems.
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