

PoS

(Semi-)leptonic decays of $D_{(s)}$ Mesons at BESIII

Y.H. Yang for the BESIII Collaboration*

School of Physics, Nanjing University, Gulou district, Nanjing, Jiangsu Province 210093, China E-mail: yangyh@ihep.ac.cn

Leptonic and semi-leptonic D decays at BESIII contribute the most precise experimental measurement of $|V_{cs(d)}|$ and decay constants $f_{D_{(s)}}$ in the world based on 2.93 fb⁻¹ and 3.19 fb⁻¹ data taken at center-of-mass energies $\sqrt{s} = 3.773$ GeV and 4.178 GeV, respectively. The largest samples at the mass threshold of the charmed hadrons $D_{(s)}$ also provide chances to extract form factors of some semi-electronic decays for the first time and together with the semi-muonic decays we could understand lepton flavour universality better. PoS(ALPS2019)021

ALPS 2019 An Alpine LHC Physics Summit April 22 - 27, 2019 Obergurg, Austria

*Speaker.

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Introduction

The ground-states of charmed hadrons, e.g., $D^{0(+)}$ [1–13], D_s^+ [14–19] and Λ_c^+ [20, 21], can only decay weakly. Precision measurements of charm (semi-)leptonic decays provide rich information to better understand strong and weak effects as shown in Fig. 1. BESIII produces these charmed hadrons near their mass thresholds; this allows exclusive reconstruction of their decay products with well-determined kinematics. For example, using $D \to \ell v_{\ell}$ ($\ell = e, \mu$), we perform the most accurate measurements of $f_{D_{(s)}}|V_{cd(s)}|$, which the extraction of Cabibbo-Kabayshi-Maskawa (CKM) matrix elements $|V_{cd(s)}|$ are essential inputs to constrain the unitarity of the CKM matrix and some first measurements of form factor $f_+^{D\to M}(0)$ by studying semi-leptonic decay $D_{(s)} \to M\ell v_{\ell}$, where M is a meson. They are essential measurements for the heavy quark decays to calibrate the theoretical calculation [22–40] like Lattice QCD, QCD sum rule, *etc.* The ratio of semi-muonic and -electronic decays provide an important test in the lepton flavour universality (LFU).

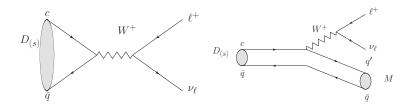


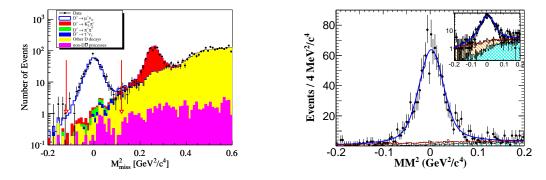
Figure 1: Feynman diagrams for leptonic D decays (left) and semileptonic D decays to mesons (right).

2. Leptonic decays

In the Standard Model, D mesons decay into ℓv_{ℓ} via a virtual W^+ boson. The decay rate of the leptonic decays $D^+_{(s)} \rightarrow \ell^+ v_{\ell}$ can be parameterized by the $D^+_{(s)}$ decay constant $f_{D^+_{(s)}}$ via [41]

$$\Gamma(D^+_{(s)} \to \ell^+ \mathbf{v}_{\ell}) = \frac{G_F^2}{8\pi} |V_{cd(s)}|^2 f_{D^+_{(s)}}^2 m_{\ell}^2 m_{D^+_{(s)}}^2 (1 - \frac{m_{\ell}^2}{m_{D^+_{(s)}}^2}), \tag{2.1}$$

where G_F is the Fermi coupling constant, $|V_{cs}|$ is the quark mixing matrix element, m_ℓ and $m_{D_{(s)}^+}$ are the lepton and D^+ masses, respectively. Using the measured branching fractions (BF) of these decays, one can determine the product of $f_{D_{(s)}^+}|V_{cd(s)}|$. By taking the $f_{D_{(s)}^+}$, calculated in LQCD, or $V_{cd(s)}$, obtained from a global fit to other CKM matrix elements that assumes unitarity, the $|V_{cd(s)}|$ or $f_{D_{(s)}^+}$ can be obtained.


2.1 $D^+ \rightarrow \mu^+ \nu_\mu$ and $D^+ \rightarrow \tau^+ \nu_\tau$

This analysis is based on the 2.93 fb⁻¹ data sample taken at the center-of-mass energy of $\sqrt{s} = 3.773$ GeV. With a total number of about 1.7×10^6 single tagged *D* mesons reconstructed. We obtain 409 ± 21 signals for $D^+ \rightarrow \mu^+ \nu_{\mu}$ decay shown in Fig. 2. The BF of $D^+ \rightarrow \mu^+ \nu_{\mu}$ is $\mathscr{B}_{D^+ \rightarrow \mu^+ \nu_{\mu}} = [3.71 \pm 0.19 \pm 0.06] \times 10^{-4}$, where the first uncertainties are statistical and the second are systematic, and in conjunction with the Cabibbo-Kobayashi-maskawa matrix element $|V_{cd}|$ determined from a global Standard Model fit, it implies a value for the weak decay constant $f_{D^+} = 203.2 \pm 5.3 \pm$ 1.8 MeV [15].

BESIII also searches for the leptonic decay $D^+ \rightarrow \tau^+ v_{\tau}$. The preliminary result of BF is $\mathscr{B}_{D^+ \rightarrow \tau^+ v_{\tau}} = 1.20 \pm 0.24 \times 10^{-3}$, where only statistical uncertainty is given. Combing $\mathscr{B}_{D^+ \rightarrow \mu^+ v_{\mu}}$, we obtain $R = \frac{\mathscr{B}_{D^+ \rightarrow \tau^+ v_{\tau}}}{\mathscr{B}_{D^+ \rightarrow \mu^+ v_{\mu}}} = 3.21 \pm 0.64$, which is consistent with the leptonic flavor universality in the SM prediction.

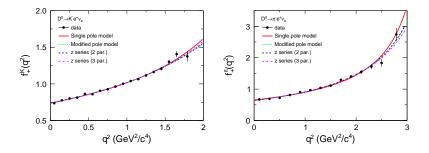
2.2 $D_s^+ \rightarrow \mu^+ \nu_\mu$

The analysis of $D_s^+ \to \mu^+ \nu_{\mu}$ [14] is based on the 3.19 fb⁻¹ data sample taken at $\sqrt{s} = 4.178$ GeV. A signal yield of 1135.9 \pm 33.1 is obtained by fitting the M_{miss}^2 as shown in Fig. 3, leading to the most precision measurement of $\mathscr{B}_{D_s^+ \to \mu^+ \nu_{\mu}} = [5.49 \pm 0.16 \pm 0.15]\%$ and $f_{D_s^+} = 252.9 \pm 3.7 \pm 3.6$ MeV.

Figure 2: The M_{miss}^2 distributions of the accepted candi-**Figure 3:** Fit to the accepted $D_s^+ \to \mu^+ v_\mu$ candidate dates of $D^+ \to \mu^+ v_\mu$. Description of each background can events. The dots with error bars are data. The blue solid curve is the fit result. The red dotted curve is the fitted background.

3. Semi-leptonic decays $D \rightarrow M\ell^+ v_\ell$

In the SM, the weak and strong effects in SL *D* decays can also be well separated. Their differential decay rate can be simply written as


$$\frac{d\Gamma}{dq^2} = \frac{\mathscr{B}_{D \to M\ell^+ \nu_\ell}}{\tau_{D_{(s)}}} = X \frac{G_F^2}{24\pi^3} |V_{cs(d)}|^2 p_M^3 |f_+^M(q^2)|^2, \tag{3.1}$$

where X is a multiplicative factor due to isospin, which equals to 1/2 for the decay $D^+ \to \pi^0 e^+ v_e$ and 1 for the other decays, G_F is the Fermi coupling constant, p_M is the meson momentum in the D rest frame, $f^M_+(q^2)$ is the form factor of hadronic weak current depending on the square of the transferred four-momentum $q = p_D - p_M$. Based on analyzing the dynamics of SL decays, one can obtain the product of $f^M_+(0)$ and $|V_{cd(s)}|$. The form factor $f^M_+(0)|V_{cs(d)}|$ can be extracted from a fit to the measured partial decay rates in separated q^2 intervals.

3.1 $D \rightarrow \bar{K}(\pi)e^+v_e$

Using the same data as that of the measurement of $D^+ \to \mu^+ v_{\mu}$, BESIII has measured the BF of $D \to K(\pi)e^+v_e$ [2, 3, 7], $\mathscr{B}_{D^+ \to K_S^0 e^+ v_e} = [8.604 \pm 0.056 \pm 0.151] \%$, $\mathscr{B}_{D^+ \to \pi^0 e^+ v_e} = [0.363 \pm 0.008 \pm 0.005] \%$, $\mathscr{B}_{D^0 \to K^- e^+ v_e} = [3.505 \pm 0.014 \pm 0.033] \%$, $\mathscr{B}_{D^0 \to \pi^- e^+ v_e} = [0.295 \pm 0.004 \pm 0.003] \%$, and form factors [2, 3, 7] of $D \to K(\pi)e^+v_e f_+^K(0)[D^+ \to K_S^0 e^+ v_e] = 0.7248 \pm 0.0041 \pm 0.0115$, $f_+^K(0)[D^0 \to K^- e^+ v_e] = 0.7368 \pm 0.0026 \pm 0.0036$, $f_+^{\pi}(0)[D^+ \to \pi^0 e^+ v_e] = 0.6216 \pm 0.0115 \pm 0.0035$, $f_+^{\pi}(0)[D^+ \to \pi^0 e^+ v_e] = 0.6372 \pm 0.0080 \pm 0.0044$,

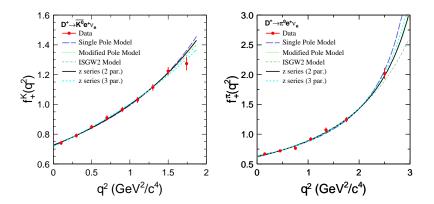

Figures 4 and 5 show the projections of form factor on the fit to partial decay rates of $D \rightarrow K(\pi)e^+v_e$.

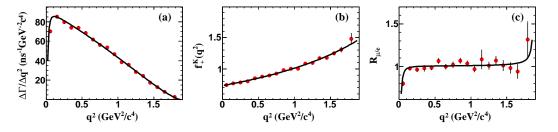
Figure 4: Projection on $f_+(q^2)$ for $D^0 \to K^- e^+ v_e$ and $D^0 \to \pi^- e^+ v_e$.

3.2 $D \rightarrow K^-(\pi)\mu^+\nu_\mu$

Muon channels also provide a chance to improve the precision of measurement on form factor $f_+^K(0)$, and more important, recent tension of LFU between τ^+ and μ^+ [42–44] need improved understanding in charm sector. Using

Figure 5: Projections on $f_+(q^2)$ for $D^+ \to \overline{K}^0 e^+ v_e$ (left) and $D^+ \to \pi^0 e^+ v_e$ (right) as function of q^2 , where the dots with error bars show the data and the lines give the best fits to the data with different form factor parameterizations.

2.93 fb⁻¹ data at $\sqrt{s} = 3.773$ GeV, the BF of $D^0 \rightarrow K^-\mu^+\nu_\mu$ is measured to be $[3.413 \pm 0.019 \pm 0.035]$ %. With the same data and fitting method as previous electron channel, we obtain $f_+^K(0) = 0.7327 \pm 0.0039 \pm 0.0030$ [10]. Figure 6 shows the projection of form factor on the fit to partial decay rates. Combining with our previous measurement, LFU test is performed with


$$R_{K^-} = \frac{\Gamma(D^0 \to K^- \mu^+ \nu_\mu)}{\Gamma(D^0 \to K^- e^+ \nu_e)} = 0.974 \pm 0.007 \pm 0.012.$$
(3.2)

There is no deviation lager than 2σ from 1 in q^2 interval (0.2, 1.5) GeV²/c⁴ as Fig 6 shows. For the pion channel, the BF of $D \to \pi \mu^+ \nu_\mu$ [12] is measured to be $\mathscr{B}_{D^0 \to \pi^- \mu^+ \nu_\mu} = [0.272 \pm 0.008 \pm 0.006]\%$ and $\mathscr{B}_{D^+ \to \pi^- \mu^+ \nu_\mu} = [0.350 \pm 0.011 \pm 0.010]\%$. Using these results along with $\mathscr{B}_{D \to \pi e^+ \nu_e}$, we have

$$R_{\pi^{-}} = \frac{\Gamma(D^{0} \to \pi^{-} \mu^{+} \nu_{\mu})}{\Gamma(D^{0} \to \pi^{-} e^{+} \nu_{e})} = 0.922 \pm 0.030 \pm 0.022, \tag{3.3}$$

$$R_{\pi^0} = \frac{\Gamma(D^0 \to \pi^0 \mu^+ \nu_\mu)}{\Gamma(D^0 \to \pi^0 e^+ \nu_e)} = 0.964 \pm 0.037 \pm 0.026.$$
(3.4)

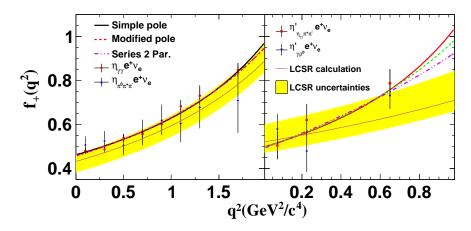

These results show no significant deviations from the standard model predictions.

Figure 6: The fit to the partial decay rates of $D^0 \to K^- \mu^+ \nu_{\mu}$ (left), the projection to the hadronic form factor (middle) and LFU test in various q^2 intervals (right).

3.3 $D_s^+ \rightarrow \eta^{(\prime)} e^+ v_e$

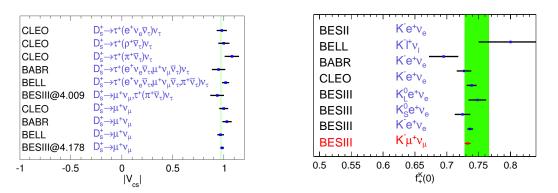

BESIII measure the absolute BFs for semi-leptonic $D_s^+ \to \eta^{(\prime)} e^+ v_e$ decays [19] with improved precision. The preliminary results are $\mathscr{B}_{D_s^+ \to \eta e^+ v_e} = [2.323 \pm 0.063 \pm 0.063]\%$ and $\mathscr{B}_{D_s^+ \to \eta e^+ v_e} = [0.824 \pm 0.073 \pm 0.027]\%$ by a simultaneous fits on $\eta \to \gamma\gamma$ and $\eta \to \pi^+\pi^-\pi^0$ for η mode and $\eta' \to \eta\gamma\gamma\pi^+\pi^-$ and $\eta' \to \gamma\pi^+\pi^-$ for η' mode. Combing the our previous measurement on $\mathscr{B}_{D^+ \to \eta^{(\prime)}e^+ v_e}$ [11], the $\eta - \eta'$ mixing angle is determined to be $\phi_P = (40.1 \pm 2.1 \pm 0.7)^\circ$. And for the first time, the experimental measurement of the dynamics of $D_s^+ \to \eta^{(\prime)}e^+ v_e$ are performed, the products of the hadronic form factor $f_{+}^{\eta^{(\prime)}}(0)$ and $|V_{cs}|$ are extracted with different form factor parameterizations. Figure 7 shows the projection of form factor on the fit to partial decay rates, where the yellow band comes from light cone sum rule [45]. For the two parameter series expansion, the preliminary results are $f_+^{\eta}(0)|V_{cs}| = 0.4455 \pm 0.0053 \pm 0.0044$ and $f_+^{\eta'}(0)|V_{cs}| = 0.477 \pm 0.049 \pm 0.011$. Taking $|V_{cs}|$ from the CKMfitter as input, we determine preliminary $f_+^{\eta}(0) = 0.4576 \pm 0.0054 \pm 0.0045$ and $f_+^{\eta'}(0) = 0.490 \pm 0.050 \pm 0.011$. Alternatively, using the $f_+^{\eta'(0)}(0)$ calculated by light-cone sum rules leads to $|V_{cs}| = 1.032 \pm 0.012 \pm 0.009 \pm 0.079$ and $0.917 \pm 0.094 \pm 0.021 \pm 0.155$, respectively, where the last uncertainties is theoretical.

Figure 7: Projections of the fits to partial decay rate of $D_s^+ \to \eta^{(\prime)} e^+ v_e$. Dots with error bars are data. Curves are the fits as described in text. Pink lines with yellow bands are the LCSR calculations with uncertainties.

3.4 $D_s^+ \to K^{0(*)} e^+ v_e$

Using the data sample collected at $\sqrt{s} = 4.178$ GeV, BESIII measured $D_s^+ \rightarrow K^{0(*)}e^+v_e$ [18]. The preliminary results are $\mathscr{B}_{D_s^+\rightarrow K^0e^+v_e} = [3.25\pm0.38\pm0.16]\%$ and $\mathscr{B}_{D_s^+\rightarrow K^{0*}e^+v_e} = [2.37\pm0.26\pm0.20]\%$. The first measurements of the hadronic form-factor parameters are obtained. The preliminary result for $D_s^+ \rightarrow K^0e^+v_e$ is $f_+^K = 0.720\pm0.084\pm0.013$, and for $D_s^+ \rightarrow K^{0*}e^+v_e$, the preliminary form-factor ratios are $r_V = V(0)/A_1(0) = 1.67\pm0.34\pm0.016$ and $r_2 = A_2(0)/A_1(0) = 0.77\pm0.28\pm0.07$.

Figure 8: Comparison of $|V_{cs}|$ with different exper-**Figure 9:** Comparison of $f_+^K(0)$ with different eximents.

4. Summary

In summary, with the word's largest $D\bar{D}$ samples near threshold, precision measurements of BFs of $D^+_{(s)} \to \ell^+ \nu_{\ell}$, $D \to \bar{K}(\pi)\ell^+\nu_{\ell}$, $D^+_{(s)0} \to \eta' e^+\nu_e$ and $D^+_s \to K^{0(*)}e^+\nu_e$ are performed at BESIII. In these decays, the form factors of

 $f^{D_s \to \eta}$, $f^{D_s \to K^{0(*)}}$ are extracted for the first time. Besides, CKM absolute matrix $|V_{cs(d)}|$, D_s meson decay constant $f_{D_s^+}$ and hadronic from factor $f_+^{D \to K}(0)$ is also determined. Meanwhile, LFU test using (semi-)leptonic D decays is performed at BESIII, and no significant deviation from the SM prediction is found at current statistics.

Funding information

The author thanks for the support by Jonit Large-Scale Scientific Facility Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences under Contract No. U1532257.

References

- [1] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 92, 071101 (2015).
- [2] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 92, 112008 (2015).
- [3] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 92, 072012 (2015).
- [4] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 94, 032001 (2016).
- [5] M. Ablikim et al. [BESIII Collaboration], Eur. Phys. J. C 76, no. 7, 369 (2016).
- [6] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 95, 071102 (2017).
- [7] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 96, 012002 (2017).
- [8] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 96, 092002 (2017).
- [9] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 97, 012006 (2018).
- [10] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 122, 011804 (2019).
- [11] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 97, 092009 (2018).
- [12] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 121, 171803 (2018).
- [13] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 121, 081802 (2018).
- [14] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 122, 071802 (2019).
- [15] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 89, 051104 (2014).
- [16] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 94, 112003 (2016).
- [17] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 94, 072004 (2016).
- [18] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 122, 061801 (2019).
- [19] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 122, 121801 (2019)
- [20] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 115, 221805 (2015).
- [21] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 121, 251801 (2018).
- [22] V. Lubicz et al. [ETM Collaboration], Phys. Rev. D 96, 054514 (2017).
- [23] L. Riggio, G. Salerno and S. Simula, Eur. Phys. J. C 78, no. 6, 501 (2018).
- [24] C. Aubin et al. [Fermilab Lattice and MILC and HPQCD Collaborations], Phys. Rev. Lett. 94, 011601 (2005).
- [25] P. Ball, V. M. Braun and H. G. Dosch, Phys. Rev. D 44, 3567 (1991).
- [26] H. Na, C. T. H. Davies, E. Follana, G. P. Lepage and J. Shigemitsu, Phys. Rev. D 82, 114506 (2010).
- [27] A. Bazavov et al., Phys. Rev. D 98, 074512 (2018).
- [28] A. Bazavov et al. [Fermilab Lattice and MILC Collaborations], Phys. Rev. D 90, 074509 (2014).

- [29] P. A. Boyle, L. Del Debbio, A. Jüttner, A. Khamseh, F. Sanfilippo and J. T. Tsang, JHEP 1712, 008 (2017).
- [30] Y. B. Yang et al., Phys. Rev. D 92, 034517 (2015).
- [31] A. Bazavov et al. [Fermilab Lattice and MILC Collaborations], Phys. Rev. D 85, 114506 (2012).
- [32] C. W. Hwang, Phys. Rev. D 81, 054022 (2010).
- [33] D. Becirevic, P. Boucaud, J. P. Leroy, V. Lubicz, G. Martinelli, F. Mescia and F. Rapuano, Phys. Rev. D 60, 074501 (1999).
- [34] H. Na, C. T. H. Davies, E. Follana, G. P. Lepage and J. Shigemitsu, Phys. Rev. D 86, 054510 (2012).
- [35] C. Aubin et al., Phys. Rev. Lett. 95, 122002 (2005).
- [36] E. Follana et al. [HPQCD and UKQCD Collaborations], Phys. Rev. Lett. 100, 062002 (2008).
- [37] P. Dimopoulos et al. [ETM Collaboration], JHEP 1201, 046 (2012).
- [38] T. W. Chiu, T. H. Hsieh, J. Y. Lee, P. H. Liu and H. J. Chang, Phys. Lett. B 624, 31 (2005).
- [39] L. Lellouch et al. [UKQCD Collaboration], Phys. Rev. D 64, 094501 (2001).
- [40] A. M. Badalian, B. L. G. Bakker and Y. A. Simonov, Phys. Rev. D 75, 116001 (2007).
- [41] D. Silverman and H. Yao, Phys. Rev. D 38, 214 (1988).
- [42] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. Lett. 109, 101802 (2012).
- [43] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 115, 111803 (2015) Erratum: [Phys. Rev. Lett. 115, 159901 (2015)].
- [44] S. Hirose et al. [Belle Collaboration], Phys. Rev. D 97, 012004 (2018).
- [45] N. Offen, F. A. Porkert and A. Schäfer, Phys. Rev. D 88, 034023 (2013).