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Scalar particles in the adjoint representation of a non-Abelian gauge theory play an important
role in many scenarios beyond the standard model, especially of GUT type. For such theories
manifestly gauge-invariant, massless, composite vector particles have been predicted, even at
weak coupling, using the Fröhlich-Morchio-Strocchi mechanism. We use lattice gauge theory
to investigate the simplest such theories, a single adjoint scalar coupled to an SU(2) Yang-Mills
theory. The results support the existence of such a particle, in accordance with the prediction.
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1. Introduction

In grand-unified theories (GUTs) the Abelian U(1) sector emerges as part of a non-Abelian
gauge theory. However, a manifestly gauge-invariant formulation [1, 2, 3] of particle physics hold-
ing beyond perturbation theory requires also in such a scenario that all low-energy degrees of
freedom are gauge-invariant with respect to the full GUT gauge group [4]. Hence, QED needs
to emerge as a low-energy effective theory of the composite states of the GUT. In particular, this
requires the emergence of a uncharged, massless vector state, the low-energy photon, which is com-
posite with respect to the GUT degrees of freedom. This appears to be the only way to conserve the
perturbative GUT idea into one which takes the underlying subtleties of the quantum gauge theory
into account [5].

Indeed, already in the standard model gauge-invariant composite states are on this grounds
required to be the effective electroweak degrees of freedom [1, 2, 3]. This works amazingly well,
and can be explained by virtue of the Fröhlich-Morchio-Strocchi (FMS) mechanism [1, 2], which
will be rehearsed in section 2. Applying this mechanism to non-Abelian gauge theories with scalars
in the adjoint representation indeed predicts the existence of such massless vector particle [5]. This
is already true for the simplest example, an SU(2) Yang-Mills theory with a single adjoint scalar.

Exploratory lattice simulations found hints of such state on tiny lattices [6]. We here substan-
tially expand on these, and find evidence for the existence of such a state. In addition, we also
confirm the analytical prediction for this state by explicitly testing the FMS mechanism.

2. Continuum SU(2) adjoint Higgs theory

The Lagrangian of an SU(2) Yang-Mills gauge theory coupled with a scalar field Φ in the
adjoint representation, also known as Georgi-Glashow model [7], is

L =−1
4

Fa
µνFaµν + tr

[
(DµΦ)†(Dµ

Φ)
]
+µ

2 trΦ
2− λ

2
(trΦ

2)2. (2.1)

The scalar field can be expanded as Φ(x) = Φa(x)T a, where T a are the generators of the gauge
group, and transforms under a gauge transformation as Φ(x)→ U(x)Φ(x)U(x)†, U(x) ∈ SU(2).
The components Φa form a 3-dimensional real-valued vector.

For our goals, we are interested in the Brout-Englert-Higgs (BEH) case. Then, in a suitable
gauge, here minimal ’t Hooft-Landau gauge [3], the scalar field can be split into a constant and a
fluctuation part, i.e.,

Φ(x) = 〈Φ〉+φ(x)≡ wΦ0 +φ(x) .

Here, Φ0 is the direction of the vacuum expectation value obeying Φa
0Φa

0 = 1, and w is its magni-
tude. Φ0 can always be chosen inside the Cartan [8]. The BEH effect generates a mass matrix for
the gauge bosons

(M2
A)

ab =−2(gw)2 tr
(
[T a,Φ0][T b,Φ0]

)
.

At tree-level [8], for SU(2) the only breaking pattern is SU(2)→U(1). Then, the U(1) subgroup
gauge field is massless, and the masses of the SU(2) coset gauge bosons are m2

A = g2w2. In addition,
one degree of freedom of the scalar field remains with mass m2

H = λw2.
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However, the observable states need to be gauge-invariant [1, 2], and are thus formed using
composite operators. One suitable operator in the desired uncharged vector channel is [5]

Oµ

1− =
∂ν

∂ 2 tr[ΦFµν ] . (2.2)

To predict its mass, the FMS mechanism requires to expand it in both the vacuum expectation value
and the couplings as [5]

Oµ

1− =−w tr
[
Φ0Aµ

⊥
]
(x)+O(w0) . (2.3)

with Aµ

⊥ = (δ
µ

ν −∂ µ∂ν/∂ 2)Aν , the transverse part of the gauge field. Inserting this into its propa-
gator yields for Φa

0 = δa3 at tree-level

〈Oµ

1−(x)O1−,µ(y)〉=
w2

2
〈A3µ

⊥ (x)A3
⊥,µ(y)〉tl +O(w0,g,λ ) . (2.4)

The subscript tl stands for tree level. Comparing poles, this predicts a massless state in the channel,
as required. This approach can be used to determine the whole spectrum [5, 3].

3. Lattice investigation

We simulate the theory using standard lattice methods, including standard spectroscopical
methods, which will be detailed elsewhere [9]. Here, we concentrate on the particularities of
detecting a massless vector state. The lattice operator we use for the uncharged vector channel is
[6]

Oi
1−(x) =

1√
2tr(Φ2)

Im tr
[
Φ(~x, t)U jk(~x, t)

]
, (3.1)

where U is the usual plaquette, and the indices (i jk) are even permutations of (123). This is the
simplest discretization of (2.2).

The correlator of an operator with definite momentum on an Euclidean lattice is [10]〈
O(~p, t)O†(~p, t ′)

〉
= Acosh

(
(t− t ′)E(~p)

)(
1+O

(
e−a(t−t ′)∆E

))
, (3.2)

where ∆E is the splitting to the next channel. However, even in a finite volume, a massless vector
particle cannot have a rest frame, as otherwise an artificial longitudinal degree of freedom would
be necessary. Therefore, we need to switch to a moving frame. Thus, following [11], we give the
operator a non-zero momentum via

B j(~p, t) =
1√
V~x

Re∑
~x

O j
1−(~x, t)e

i~p·~x . (3.3)

The chosen momentum is the smallest one in the z direction on our symmetric lattices of size N4

~pz =

(
0,0,

2π

N

)
. (3.4)
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Figure 1: The transverse part (top-left panel) and longitudinal part (top-right panel) of the gauge-invariant
vector correlator in a moving frame on a N = 16 lattice. The corresponding effective energy is shown in the
bottom-left panel. The gauge-dependent propagator, which requires less statistics, is shown in the bottom-
right panel for N = 24. Simulations parameters are β = 4, κ = 3/4, and λ = 1 [9].

The correlator is then divided in a transverse and in a longitudinal component, using

C⊥(t) =
1
N

N−1

∑
t ′=0

2

∑
j=1

〈
B j(~pz, t ′)B j†(~pz, t + t ′)

〉
, (3.5)

C‖(t) =
1
N

N−1

∑
t ′=0

〈
B3(~pz, t ′)B3†(~pz, t + t ′)

〉
. (3.6)

If the state is indeed entirely massless, the longitudinal part needs to vanish identically. Of course,
if the operator has an overlap with massive states, this needs not to be the case.

Preliminary results obtained for lattice parameters β = 4, κ = 0.75, λ = 1, (see for a translation
into continuum notation [9, 6]) are shown in figure 1 for two lattice sizes, 164 and 244. The absence
of a signal in the longitudinal correlator is a strong hint of a massless state present in this theory.
The effective energy E(t) =− ln(C⊥(t)/C⊥(t +1)) obtained from the transverse correlator is also
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shown, together with the expected behavior for E(~p) = |~pz| = 2π/N, showing again agreement.
Hence, the results are in good agreement with the expectations for a massless particles.

We also show the gauge-dependent gauge-boson propagator in minimal ’t Hooft-Landau gauge
in figure 1. The appearance of the massless Cartan mode is seen, while the coset modes show a
typical [3] massive behavior. This comparison of the left-hand-side and the right-hand-side of (2.4)
supports the FMS mechanism at leading order in this theory.

4. Conclusions

We have presented preliminary evidence that in a theory with an adjoint scalar a gauge-
invariant, massless, composite vector particle exists, in agreement with the predictions of the FMS
mechanism [5]. This opens the way for an emergence of a gauge-invariant low-energy effective
QED in a GUT setting. It also opens up interesting options for the generation of physical massless
vector particles.

These results will require further detailed studies [9], especially of the volume as a systematic
lattice artifact. If established firmly, this will support the FMS mechanism as the suitable language
to describe particle physics theories with BEH effect, and continue to pave the way for gauge-
invariant model building.
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