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Active galactic nuclei with a relativistic jet pointing to the Earth, also called blazars, are natural
accelerators of particles, as witnessed by the strong non-thermal emission. This makes them good
candidate sources for extragalactic cosmic rays and neutrinos at high-energy. The recent detection
of IceCube-170922A, a ∼ 300 TeV neutrino potentially correlated with the flaring blazar TXS
0506+056, directs attention toward this kind of objects as neutrino emitters. This coincidence
event shed light on the structure and dynamics of the sources confirming the presence of cosmic
rays inside the jet. In particular it offers a unique opportunity to explore the interplay between
energetic photons, neutrinos and cosmic rays in the jet.
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1. Introduction

High-energy (> 60 TeV) neutrinos were observed for the first time in 2010 by the world’s
largest neutrino detector IceCube, a km3-scale detector constructed deep within the ice at the geo-
graphical South Pole [1]. Two main types of signals, tracks and cascades, are measured by IceCube.
The former are produced by muons, mostly due to charged current interactions of muon neutrinos
with matter. Tracks are reconstructed with angular uncertainties of∼ 0.5◦−1◦. Cascades, products
of all other neutrino interactions, result from particle, that are very short, together with showers.
For this reason typical angular uncertainty for cascades is quite big, 10−20◦. On average, 8 track-
like high-energy neutrino events with a high probability of being astrophysical are detected and
published as alerts per year. In 2016, in fact, IceCube Collaboration set up a real time alert system
[2]. Any track-like event with sufficient energy to have a high probability of being an astrophysical
neutrino generates an alert in the form of a public Gamma-ray Coordinate Network circular within
a minute of the event for possible follow-up by astronomical telescopes.

After ∼ ten years of observation the origin of these neutrinos is still unknown. The main
channels to produce high-energy neutrinos are the interaction of relativistic protons with matter
(pp channel) or with radiation (pγ reaction or photo-meson) and for this reason there are several
kind of sources that can be considered as neutrino emitters (see [3] or [4] for a review). The quite
isotropic distribution of arrival directions suggests an extragalactic component.

Here we focused on Blazars, a quite small fraction of the entire population of active galactic
nuclei (AGN) with a relativistic jet pointed to us [5]. Their defining phenomenology includes the
presence of a compact core, extreme variability at all frequencies (but generally being more extreme
at the highest frequencies), high degree of optical and radio polarization ([6],[7] for a review).
The most distinctive feature, however, is the intense emission in the γ-ray band, often dominating
the bolometric radiative power output. Indeed, blazars are the most numerous extragalactic γ-ray
sources, both at GeV and TeV energies. The 4-years catalogue of Fermi-LAT (4FGL, [8]) reports
more than 1700 blazars, to be compared with about 30 non-blazar extragalactic sources. Similar
is the situation at higher energies ([9]).Their spectral energy distribution (SED) is characterised by
two peak in the νFν plot. Synchrotron emission from the relativistic electrons produced the first
bump peaking in the IR-optical-UV band. The origin of the second peak, in the γ-ray band, is
still under debate. It can be produced by the Inverse Compton emission (leptonic model) or by the
synchrotron emission of relativistic protons or photomeson cascade (hadronic model).

Blazars are divided into two subclasses: flat spectrum radio quasars (FSRQ) showing broad
emission lines in the optical spectrum and generally powerful in the γ-ray band, and BL Lac objects,
less powerful, with weak or absent emission lines and with the two peak of the SED at the same
luminosity. The favourite channel to produce high-energy neutrino from these sources is the pγ

reaction due to the abundance of photons produced inside the jet and in the environment.
At present there is only one case1 for which there is a strong evidence of a spatial correlation

between the direction of a neutrino event observed by IceCube and a flaring blazars [12] (hereinafter
TXS event). In 2017, the blazar object TXS 0506+056 was the only γ-ray source within the well
reconstructed direction region of the IceCube event IC-170922A [12], and simultaneously in an

1In 2016 a possible correlation between a neutrino with high angular uncertainty and a flaring FSRQ was reported
by [10]. However there are several arguments excluding this correlation (see e.g. [11]).
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elevated flux state in the Fermi-LAT energy range [12] at the time this event was detected. A
multiwavelenth campaign dedicated to this source showed a global high-state during the neutrino
event [12]. Moreover, for the first time, this blazar was observed at very-high energy by MAGIC
telescopes [13].

In the following, after a sketch of the general framework, we review the theoretical and obser-
vational status concerning the neutrino emission from both FSRQs and BL Lacs.

2. The general framework

AGN are composed by a central supermassive black hole (MBH = 108− 109M�) accreting
matter from the surroundings (see [5] for more details).

The phenomenological division between FSRQ and BL Lac objects can be interpreted as a
difference in the nature of the accretion flow [14] [15]. In FSRQ, which show bright thermal
features (optical lines) and, in some cases, a bump at optical-UV frequencies (thought to mark
the direct emission from the hot accreting gas), the accretion likely occurs through a radiatively
efficient (optically thick) accretion disk [16]. The luminous UV continuum emitted by the disc is
responsible for the photoionization of the gas confined in "clouds" rapidly orbiting the black hole
and occupying the so-called broad line region (BLR). Farther out (1-10 pc), dust grains, probably
organised in a geometrical torus, intercept a fraction ε ≈ 0.5 of the disk continuum, reprocessing
it as thermal IR emission (with temperature close to that corresponding to the sublimation of dust,
T ≈ 103 K).

The lack of strong thermal components in BL Lac optical spectra is generally interpreted as an
evidence of a radiatively inefficient accretion flow (RIAF). At very low accretion rates the particle
density is so low that the energy exchange time scale between electrons and protons becomes larger
than the accretion time scale. Most of the dissipated energy remains stored within the protons/ions,
and an effective radiating disc model is no more plausible. In this case the accretion flow can
achieve temperature higher than the accretion disc, for this reason it is also called "hot accretion
flow". It occurs at lower mass accretion rates, and is described by models such as the advection-
dominated accretion flow (ADAF) and luminous hot accretion flow (LHAF) (see [17] for more
details). For this reason the emission lines in the optical spectra are weak or absent. The presence
of this kind of accretion in BL Lac is only theorised and there is no observational evidence to
support this interpretation.

This scheme can explain the presence of broad emission lines in case of FSRQs and the ab-
sence or weakness of these thermal features in case of BL Lacs. It is also able to explain the
difference between the GeV γ-ray spectra of BL Lacs (generally displaying hard spectra) and those
of FSRQ (characterised by soft - photon index larger than 2 - spectra), as the effect of the different
radiative losses characterising the high-energy electrons in the two kind of sources.

More generally, the interplay between radiative losses of the emitting electrons in the jet and
the accretion rate onto the black hole could be at the base of the so-called "blazar sequence" [18]
[19], i.e. the trend between the observed luminosity (progressively increasing from BL Lacs to
FSRQ) and the synchrotron and high-energy SED peak frequencies (decreasing from BL Lacs to
FSRQ) displayed by the blazar population. However this trend could be a selection effect, see for
examples [20] for an alternative scenario.
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3. Main models

Neutrino emission from both FSRQs and BL Lac objects is attributed to the pγ interaction
in which relativistic protons, or more generally cosmic rays (CR), interac with photons produced
in the jet itself or with an external radiation field (emission from BLR, torus, disc, other). Their
interaction produces pions, where neutral pions decay into two γ-ray, while charged pions produced
neutrinos through the decay: π± → µ±+ νµ → e±+ νe + 2νµ (note that we do not distinguish
between ν and ν̄). Due to the threshold of the pγ reaction, the typical energy of protons and
photons involved is of the order of Ep≈ 1016−1017 eV and Eγ ≈ 1−10 eV, respectively to produce
neutrinos at ∼ 100 TeV −10 PeV.

The most simple neutrino emission model from Blazars assumes a single region of the jet
in which relativistic protons interact with photons produced in the jet itself by the synchrotron
emission of the electrons. However this simple case leads to disfavour blazars as main neutrino
emitters, e.g. [21] or [22]. Due to the different environment of FSRQs and BL Lacs it is convenient
to consider them separately to understand the main photon field possibly involved in the neutrino
production.

As already said previously, FSRQs are powerful Blazars, with an accretion disk that irradiate
the BLR. Following [23], we can reasonably assume that the spectral shape of the BLR emission
observed in the jet frame frame is a blackbody peaking at a factor Γ times the (rest-frame) frequency
of the Lyman α line. The external radiation can be responsible for the photomeson reaction if
relativistic protons are accelerate before the BLR. Figure 1 shows the SED of a generic FSRQ
(solid blue line) and the expected neutrino emission using different photon population involved in
the pγ reaction. Note that we assumed a population of protons distribution parameterised by a
cut-offed power-law with the total injected luminosity of Lp = 1045 erg s−1, a spectral index n = 2
and an energy cut at Ecut = 1017 eV (see [21] for a more complete discussion).

For BL Lac objects the situation is less clear because of the weakness or absence of external
radiation coming from BLR or torus. However, TXS 0506+056, the flaring blazar associated to the
muon neutrino event in 2017, is classified as a BL Lac object. In particular BL Lac are divided
in three subclasses due to the position of the synchrotron peak, νS of the SED. TXS 0506+056 is
classified as an intermediate/low BL Lac (IBL/LBL, or, ISP/LSP, see [24]). BL Lac was already
took into account as neutrino emitters before this event. In [21] the so-called spine-layer scenario
was proposed to produce neutrino. This view, which adopts a structured relativistic jet with a fast
core and a slower shield, is based on both observations, e.g. [25], and theoretical motivations,
e.g. [26]. In this scenario the protons inside the core can interact with the photons produced in
the external region, amplified by relativistic motion effects. This scenario was proposed in [13] to
explain the TXS event of 2017. Another external radiation population that can be involved in the
pγ reaction are those produced by RIAF. In this case the relativistic protons should be accelerated
close to the accretion flow in order to have an efficient neutrino production. This scenario is already
suggested for other kind of AGN, as in [27] and it was suggested for the first time for BL Lac in
[28]. In [28] the neutrino emission using the RIAF radiation is considerable in comparison with the
internal jet radiation, only for the LBL objects. A paper in which this scenario is applied to TXS
0506+056 is on preparation. Other alternative scenarios were presented to explain the TXS event
(see [29], [30], [31], [32], [33], [34]). The common feature that comes up from the models of the
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Figure 1: SED for a typical FSRQs belonging to the luminosity bin 1045 erg s−1 < LLAT < 1046 erg s−1

of the blazar sequence [19]. Blue solid line shows the average SED of this luminosity bin derived with the
phenomenological model. Red dotted line, green dash-dotted line and blue dashed line are respectively the
neutrino spectrum obtained using the radiation of the torus, of the BLR and the internal synchrotron radiation
as targets for the pγ reaction.

SED of TXS 0506+056 during the neutrino event is that the high-energy electromagnetic emission
is dominated by leptonic emission (Inverse Compton), while the radiation emitted via hadronic
processes (Bethe-Heitler cascade, synchrotron by relativistic protons and cascade of photo-meson
reaction) is not relevant. The reprocessed hadronic component can come up in the X-ray band
(between the two peaks of the SED) and at high-energy (TeV band). Another important feature
that comes up is that the shape of the X-ray spectrum could give information on the relative role of
leptonic and hadronic processes.

More exotic scenarios were presented to explain the neutrino emission from this BL Lac, such
as the pp reaction ([33] or [35]).

4. Open issues

The study of blazars as high-energy neutrino sources is becoming increasingly interesting after
the observation of a coincidence event with the flaring blazar TXS 0506+056 by IceCube in 2017.
However there are several open issue still under debate. Here we present some of these:

• Several studies suggest that the neutrino background observed by IceCube is a sum of several
components (see for example [36] or [37]). In particular the IceCube Collaboration estimates
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a maximum contribution of ∼ 20% of the observed neutrino background from blazar. How-
ever, due to the relatively high angular uncertainty of the neutrino arrival direction, it should
be easier find an electromagnetic counterpart if the source is a transient. For this reason
blazar are in any case good neutrino sources to monitor. In fact, recently indications of Ice-
Cube Collaboration, suggest that in the neutrino sky map there is a hint of clustering at the
4σ level for four sources. Three of these are blazar, while another is a Seyfert galaxy NCG
1068 (see [38], [39]).

• Recent [40] argued that TXS 0506+056 is not a BL Lac object, but a so-called "masquerading
FSRQ": a FSRQ with hidden broad lines and a standard accretion disc. The motivations
are both observational that theoretical. The nature of TXS 0506+056 has an impact on the
theoretical modelling of this source and on our understanding of neutrino emission in blazars.
According to the blazar sequence TXS 0506+056 is probably an intermediate object between
FSRQ and BL Lac. Fig.2 shows a preliminary plot of the energy index αγ versus the γ-ray
luminosity Lγ for a selected objects of 4LAC catalogue of Fermi [41]. The blazars were
selected based on the luminosity at the synchrotron-peak frequency LS given in the catalogue,
the γ-ray spectral index and the γ-ray luminosity. The region around the grey line (αγ = 1.2)
can be interpreted as a division of the changing accretion regime of the underlying accretion
disk from radiatively efficient to inefficient [15]. The green cross is TXS 0506+056, that
stays below the grey line.
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Figure 2: The energy spectral index αγ vs of the γ-ray luminosity Lγ in the band [0.1- 100 GeV] for a
selected blazars with known redshift present in the 4LAC sample. The red crosses are FSRQs; blue crosses
are BL Lacs, and TXS 0506+056 is the green cross. The horizontal grey line marks αγ = 1.2. With light
color are represented all the FSRQ (orange) and BL Lac (light blue) of the 4LAC catalogue.
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• After the TXS event, the IceCube Collaboration presented the evidence for an extended neu-
trino excess coming from the same direction of TXS 0506+056 consisting of ∼ 13 neutrino
events detected in a period between September 2014 - March 2015 ([42]). Differently from
the IC-170922A event, there is no evidence for a γ-ray flare, and not enough data at other
wavelength showing an high-state ([43]). Moreover the previous lepto-hadronic models used
to explain the single event in 2017 seems to be challenged because of the steep spectrum of
this neutrino flare (see for example [44], [45], [46]).

• Even if high peaking BL Lac object (HBL or HSP) such as Mkn 501 or Mkn 421 are more
prominent in γ-ray than IBL/LBL, we still do not have clear cases of neutrinos possibly
associated with these kind of sources. [47] shows the upper limits to the energy density of
any radiation field for this kind of sources. With this work is evident that HBL can produce
neutrinos but their production efficiency is very low.
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