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We explore the distribution of the energy momentum tensor (EMT) around quark–anti-quark and
single quark at nonzero temperature in SU(3) Yang-Mills gauge theory by extending our previous
study [1] on the EMT distribution in static quark–anti-quark systems in vacuum. We discuss the
disappearance of the flux tube structure observed in the vacuum simulation. We investigate the
total stress acting on the mid-plane between a quark and an anti-quark and show that it agrees
with the force obtained from the derivative of the free energy. The color Debye screening effect
in the deconfined phase is also discussed in terms of the EMT distribution.
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1. Introduction

The energy-momentum tensor (EMT) Tµν(x) plays crucial roles in various fields in physics
including gravitational theory, hydrodynamics, and elastic body. Among the components of EMT,
its spatial part is related to the stress tensor σi j as σi j =−Ti j with i, j = 1,2,3. The stress tensor is
a fundamental observable related to force acting on a surface. In field theory, the stress tensor rep-
resents distortion of fields induced by external charges [2]. In Maxwell theory, for example, local
propagation of a Coulomb interaction between charges is characterized by the Maxwell stress ten-
sor, which is the spatial component of the EMT in this theory, Tµν = FµρFρ

ν − (1/4)δµνFρσ Fρσ ,
with the field strength Fµν [2]. The stress tensor in non-Abelian gauge theories including Quan-
tum ChromoDynamics (QCD) is even more important because this observable characterizes the
structure of the non-Abelian fields with external sources in a gauge invariant manner.

In Ref. [1], the stress-tensor distribution in static quark (Q) and an anti-quark (Q̄) systems in
vacuum in SU(3) Yang-Mills (YM) theory has been numerically measured on the basis of lattice
gauge simulation. In this study, by utilizing the EMT operator defined on the lattice [3] through the
YM gradient flow [4], we have shown the local structure of the flux tube in a gauge invariant way.
We have also quantitatively revealed the transverse structure of the stress tensor distribution on the
mid-plane between QQ̄ by taking the continuum limit. By employing the Abelian-Higgs model
as a phenomenological model of QCD [5], we have also studied the structure of EMT distribution
around QQ̄ and compared it with the numerical results in Ref. [1].

In this proceedings, we extend our previous study to the analysis of the stress distribution in
the quark–anti-quark and single quark systems at nonzero temperature.

2. Energy-Momentum Tensor around Static Quark and Anti-Quark

From the EMT, Tµν(x) (µ,ν = 1,2,3,4) in the Euclidean space, the local energy density and
the stress tensor are respectively given by ε(x) = −T44(x), σi j(x) = −Ti j(x) (i, j = 1,2,3). The
force per unit area Fi acting on a surface with the normal vector ni is given by Fi = σi jn j =

−Ti jn j [2]. The principal axes of stress tensor is obtained after solving the eigenvalue equations
Ti jn

(k)
j = λkn(k)i (k = 1,2,3). Here n(k)i are the principal axes and the strengths of the force per unit

area along n(k)i are given by the absolute values of the eigenvalues λk. The force acting on a test
charge is obtained by the surface integral Fi =−

∫
S Ti jdS j, where S is a closed surface surrounding

the charge with the surface vector S j oriented outward from S.

Next let us review how we measure the EMT in thermal systems with static Q and/or Q̄ based
on the lattice gauge theory at nonzero temperature. First, at nonzero temperature static Q and Q̄
in Euclidean space are represented by the Polyakov loop Ω(~x) and its Hermitian conjugate Ω†(~x),
respectively. In the present study we focus on the singlet QQ̄ system [6,7] and the single Q system.
This system is represented in terms of the correlation function between the Polyakov loop and
its Hermitian conjugate, Tr[Ω†(~x)Ω(~y)]. Since this is a gauge dependent quantity, we impose the
Coulomb gauge fixing. In addition to the singlet QQ̄ system, we explore the single Q, which is
represented by TrΩ(~x), above the critical temperature Tc.
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β a [fm] Ns Nτ Nconf T/Tc

6.600 0.0384 48 12 320 1.44
7.166 0.0185 48 12 300 2.97

Table 1: Simulation parameters on the lattice. Ns (Nτ) denotes the spatial (temporal) lattice size.

An expectation value of an operator O(x) in the singlet QQ̄ and the single Q systems are
respectively obtained by

〈O(x)〉QQ̄ =
〈O(x)Tr[Ω†(~y)Ω(~z)]〉
〈Tr[Ω†(~y)Ω(~z)]〉

−〈O(x)〉, (2.1)

〈O(x)〉Q =
〈O(x)TrΩ(~y)〉
〈TrΩ(~y)〉

−〈O(x)〉. (2.2)

Note that Eq. (2.2) is ill-defined below Tc in pure YM theory because the center symmetry leads to
〈TrΩ(~x)〉= 0 in the confined phase. We thus consider the single Q system above Tc.

In this study, we consider the EMT operator as the observable O in Eq. (2.1) and Eq. (2.2). In
order to define the EMT in YM theory, we use the YM gradient flow [3, 4]. The YM gradient flow
is defined through the flow equation

dAµ(t,x)
dt

=−g2
0

δSYM(t)
δAµ(t,x)

, (2.3)

where t denotes the fictitious 5-th dimensional coordinate called the flow time [4], and the initial
condition of Aµ(t,x) at t = 0 is given by the ordinary gauge field Aµ(x) in the four dimensional
Euclidean space. The YM action SYM(t) at t > 0 is composed of Aµ(t,x). The gradient flow for
positive t leads to smearing of the gauge field within the radius

√
2t. Using the flowed field, the

renormalized EMT operator is given by [3]

T R
µν(x) = lim

t→0
Tµν(t,x), Tµν(t,x) = c1(t)Uµν(t,x)+4c2(t)δµνE(t,x)+O(t), (2.4)

where E(t,x) = (1/4)Ga
µν(t,x)G

a
µν(t,x) and Uµν(t,x) = Ga

µρ(t,x)G
a
νρ(t,x)− δµνE(t,x) with the

field strength Ga
µν(t,x) composed of the flowed gauge field Aµ(t,x). We use the higher-order

perturbative coefficients for c1(t) and c2(t) obtained in Refs. [8, 9]. The validity and usefulness of
this EMT operator have been confirmed via the study on thermodynamic quantities in SU(3) YM
theory [9, 10].

In lattice simulations we measure 〈Tµν(t,x)〉lat
QQ̄ and 〈Tµν(t,x)〉lat

Q at finite t and a. In order to
avoid the discritization effect and the over-smearing of the gradient flow [10], one has to choose an
appropriate window of t satisfying the condition a/2 . ρ . L, where ρ ≡

√
2t is the flow radius

and L is the minimal distance between the EMT operator and the Polyakov loop.
Finally we should perform an extrapolation to (t,a) = (0,0) in order to obtain the renormalized

EMT operator. In the present study, however, we discuss preliminary results with fixed t and a.

3. Setup

We have performed the numerical simulations in SU(3) YM theory on the four-dimensional
Euclidean lattice with the Wilson gauge action and the periodic boundary conditions for two tem-
peratures T . The simulation parameters for each T are summarized in Table 1. In the measurement
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Figure 1: (a) Distribution of the principal axes of Ti j for a singlet QQ̄ system separated by R = 0.69 fm in
SU(3) Yang-Mills theory with a = 0.038 fm and t/a2 = 2.0 at T/Tc = 1.44. (b) Distribution of the principal
axes of Ti j in vacuum, where a = 0.029 fm and t/a2 = 2.0 [1]. In both panels, the red (blue) arrows in the
upper (lower) half plane are highlighted. Note that the lengths of arrrows are suitably scaled.

of the Polyakov loop Ω(~x), we adopt the standard multi-hit procedure by replacing every temporal
links by its thermal average with the neighboring links for the noise reduction [11].

4. Stress Distribution on the Plane including Two Sources

In this section, we consider the stress distribution in the singlet QQ̄ system, focusing first on
the plane including two sources. Shown in Fig. 1 (a) is the two eigenvectors of the local stress
tensor at T/Tc = 1.44 around the two sources separated by R = 0.69 fm obtained on the lattice
with a = 0.038 fm with fixed t/a2 = 2.0. The other eigenvector is perpendicular to this plane. The
eigenvector with negative (positive) eigenvalue is denoted by the red outward (blue inward) arrow
with its length proportional to

√
|λk|:

←◦→ : λk < 0, →◦← : λk > 0. (4.1)

Neighbouring volume elements are pulling (pushing) with each other along the direction of red
(blue) arrow. The arrows in the spatial regions near Q and Q̄ , which would suffer from the over-
smearing of the gradient flow due to the overlap between the source charge, are excluded. In
Fig. 1 (b), we show the stress distribution around QQ̄ in vacuum with the same QQ̄ distance R =

0.69 fm obtained in Ref. [1] as a comparison. Fig. 1 (b) clearly reveals the formation of the flux
tube in terms of the stress tensor in a gauge invariant manner; the region where the strong stress acts
concentrates around the one-dimensional tube structure between QQ̄. On the other hand, Fig. 1 (a)
shows that the flux tube, which is formed in vacuum, is dissociated at T/Tc = 1.44 due to medium
effects, and the stress distribution around each source behave alomost independently.

5. Stress Distribution on the Mid-Plane between Two Sources

Next we focus on the mid-plane between Q and Q̄. We use the cylindrical coordinate sys-
tem c = (r,θ ,z) with r =

√
x2 + y2 and 0 ≤ θ < 2π . On the mid-plane, because of the cylindri-
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Figure 2: EMT distribution on the mid-plane −〈T44(t,r)〉lat
QQ̄ and −〈Tcc(t,r)〉lat

QQ̄ in the cylindrical coordi-
nate system at T/Tc = 1.44(left),2.97(right) with RT = 1.0. Note that the lattice spacing and the flow time
are fixed.

cal symmetry and the parity symmetry with regard to z axis, the stress tensor is diagonalized as
〈Tcc′(t,x)〉lat

QQ̄ = diag(〈Trr(t,r)〉lat
QQ̄,〈Tθθ (t,r)〉lat

QQ̄,〈Tzz(t,r)〉lat
QQ̄).

In Fig. 2, we show the r dependence of the resulting EMT at T/Tc = 1.44 and 2.97 with
RT = 1.0 in the normalization 〈Tcc′(t,x)〉lat

QQ̄/T 4. The QQ̄ distance of the left panel in the physical
units is R = 0.69 fm. Note that we fix t/a2 = 2.0 and the lattice spacing a in Fig. 2 and the
extrapolation to (a, t)→ (0,0) is not taken. We notice that the thermal expectation value 〈Tµν(t,x)〉
is subtracted in these results so that 〈Tcc′(t,r→ ∞)〉lat

QQ̄ = 0.
From the figure and the comparison with the results in Ref. [1], one finds several noticeable

features:

1. Compared with the vacuum result obtained in Ref. [1], the absolute values of all components
in the left panel are suppressed in physical units. This suppression is interpreted from the
dissociation of the flux tube observed in Fig. 1.

2. In the left panel of Fig. 2, there are approximate degeneracies, 〈T44(t,r)〉lat
QQ̄'〈Tzz(t,r)〉lat

QQ̄ <

0 and 〈Trr(t,r)〉lat
QQ̄ ' 〈Tθθ (t,r)〉lat

QQ̄ > 0, for a wide range of r at T/Tc = 1.44. Also,
one sees a separation between these two degenerated channels. From this result, we find
〈Tµµ(t,r)〉lat

QQ̄ = 〈T44(t,r)+Tzz(t,r)+Trr(t,r)+Tθθ (t,r)〉lat
QQ̄ < 0. These features are also

found in the stress distribution in vacuum [1].

3. By comparing both panels in Fig. 2, one sees that all components tend to be degenerated in
the normalization 〈Tcc′(t,x)〉lat

QQ̄/T 4 as T becomes larger. This tendency is in part attributed
to the fact that the value of R = 1.0/T for T/Tc = 2.97 in physical units is smaller than that
for T/Tc = 1.44. As R becomes smaller, the system is dominated by the physics at high-
energy scale and the behavior of the EMT around QQ̄ approaches the one described by the
leading order in perturbation theory at which all components of the EMT degenerate.
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Figure 3: EMT distribution around a single static quark −〈Tcc(t,r)〉lat
Q and −〈T44(t,r)〉lat

Q in the spherical
coordinate system at T/Tc = 1.44(left),2.97(right). Note that the lattice spacing and the flow time are fixed.
The range of r highlighted by the yellow shades in both figures represents the over-smearing region.

6. Stress Distribution around Single Quark

Finally we consider the single quark system. We employ the spherical coordinate system c =
(r,θ ,ϕ) with the radial corrdinate is r =

√
x2 + y2 + z2 and the polar and azimuthal angles θ and ϕ .

The spherical symmetry makes the stress tensor diagonalized as 〈Tcc′(t,x)〉lat
Q = diag(〈Trr(t,r)〉lat

Q ,

〈Ttt(t,r)〉lat
Q ,〈Ttt(t,r)〉lat

Q ), where the transverse components 〈Ttt(t,r)〉lat
Q are degenerated owing

to the rotational symmetry. Shown in Fig. 3 is the profile of each component 〈Tcc′(t,x)〉lat
Q as a

function of r at T/Tc = 1.44 and 2.97. The yellow shades in Fig. 3 qualitatively represent the range
of r which suffers from the overlap between the EMT operator and the Polyakov loop; in this range
of r, the validity of our analysis is completely lost.

From Fig. 3, one finds an approximate degeneracy of the absolute values of the spatial com-
ponents 〈Trr(t,r)〉lat

Q and 〈Ttt(t,r)〉lat
Q . The figure also shows that energy densiy −〈T44(t,r)〉lat

Q has
a clear separation from these channels. One also finds that the magnitudes of all the components
become smaller as T becomes larger. This behavior is attributed to the EMT at the leading order in
perturbation theory given by ∼ α2

s (r)/r4 with the strong coupling constant αs(r) = g2/(4π).
From the EMT distribution around a static quark, it is expected that many interesting features

of the medium can be extracted. In the large r region, because the color electric field E behaves as
E ∼ e−mDr, where mD is the Debye screening mass, all the components of EMT damp exponentially
e−2mDr. On the other hand, in the small r region components of EMT behave as ∼ α2

s (r)/r4. From
these behaviors of EMT, one can study the values of mD and αs(r). A numerical confirmation of the
mechanical conservation law in the spherical coordinates, ∂r(r2Trr) = rTtt , is another interesting
subject.

7. Summary and Outlook

In this proceedings, we have explored the spatial distribution of EMT at nonzero temperature
in the single quark system as well as in the singlet QQ̄ system in SU(3) lattice gauge theory. The
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YM gradient flow plays a crucial role to perform these analyses on the lattice. The dissociation of
the flux-tube structure in the QQ̄ system at high temperature in the deconfined phase is observed
from the stress distribution.

Although we showed the numerical results with fixed a and t throughout this study, in order
to investigate the stress distribution in the continuum limit one has to take the double extrapolation
(a, t)→ (0,0). Using the double-extrapolated results, we plan to analyze the static quark systems
at nonzero temperature more quantitatively. In particular, the analysis of the Debye screening mass
mD and the strong coupling αs(r) from the EMT distribution around a single quark is an interesting
future study. There are also a lot of interesting applications of this study, such as the generalization
to full QCD with the QCD flow equation [12] and the analyses of the QQ system and the QQQ
system at zero and nonzero temperatures.
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