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We report on our calculation of the interglueball potentials in SU(2), SU(3), and SU(4) lattice
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1. Introduction

The dark matter (DM) is representing a significant fraction of the energy content of the Uni-
verse, but we currently do not know the theory which is governing this sector [1, 2]. Among many
candidates of new physics beyond the standard model, we focus on the “dark” SU(Nc) Yang-Mills
theory (YMT) [3, 4] which has the advantage to have good naturalness thanks to the dimensional
transmutation, thus avoiding important fine-tunings of massive parameters.

The lightest particle in the YMT is the 0++ glueball, which respects the properties of the
observed DM. The glueballs are nonperturbative objects, so the extraction of their dynamical in-
formation absolutely requires the lattice calculation [5–20]. An important quantity in the physics
of DM is the self-scattering cross section [21], which is constrained by observational data such as
the galactic collision. The calculation of the interhadron scattering on lattice recently knew signif-
icant progress thanks to technical improvements. Through this calculation, we expect to constrain
the scale parameter of SU(Nc) YMT. In this proceedings contribution, we report on our calcula-
tion of the interglueball potentials in SU(2), SU(3), and SU(4) YMTs using the indirect method
(the so-called HAL QCD method) [22–24] and the cluster decomposition error reduction technique
(CDERT) [25]. We also show the preliminary constraint on the scale parameter of SU(2) YMT.

2. Setup of the calculation

In this work, we simulate SU(2) (β = 2.5), SU(3) (β = 5.7), and SU(4) (β = 10.789) YMTs
on 163 × 24 lattice with the standard plaquette action. The configurations are generated with the
pseudo-heat-bath method. To derive physical quantities from lattice calculations, we have to set the
scale. However, we do not know the scale of the YMT since the dark matter particles have not been
identified so far. We therefore leave it as a free parameter Λ. We note that all calculated quantities
are finally expressed in the unit of Λ.

The relation between Λ and the string tension σ was fitted from the analysis of the running
coupling [26, 27], as

Λ√
σ

= 0.503(2)(40)+
0.33(3)(3)

N2
c

. (2.1)

The string tension was calculated for several Nc and β . By combining the result of these calcula-
tions with Eq. (2.1), we obtain the lattice spacing in terms of the scale parameter (see Table 1).

Nc β a
√

σ a (Λ−1)

2 2.5 0.1834 (26) [8] 0.107 (8)
3 5.7 0.3933 (16) [14] 0.212 (16)
4 10.789 0.2706 (8) [14] 0.142 (3)

Table 1: Relation between the lattice spacing and the scale parameter Λ for several SU(Nc) YMTs. The
numbers in parenthesis denote the combined statistical and systematic errors.

3. Glueball correlators on lattice and the HAL QCD method

We define the 0++ glueball operator on lattice as

ϕ(t, x⃗)=Re[P12(t, x⃗)+P12(t, x⃗+ a⃗e3)+P23(t, x⃗)+P23(t, x⃗+ a⃗e1)+P31(t, x⃗)+P31(t, x⃗+ a⃗e2)], (3.1)
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where Pi j (i, j = 1,2,3) are the plaquette operator in i− j direction, with the unit vectors a⃗e1,2,3.
We note that the 0++ glueball operator has a vacuum expectation value, so we have to subtract it in
order to calculate physical correlators.

The glueball operator may be improved with the APE smearing [7,12,13]. It is constructed by
maximizing

ReTr[U (n+1)
i (t, x⃗)V (n)†

i (t, x⃗)], (3.2)

where U (n)
i is the link variable after n iterations, and

V (n)
i (t, x⃗) ≡ αU (n)

i (t, x⃗)+ ∑
± j ̸=i

U (n)
j (t, x⃗)U (n)

i (t, x⃗+ e⃗ j)U
(n)†
j (t, x⃗+ e⃗i). (3.3)

We manually vary α and n to find the optimized 0++ glueball two-point function and its effective
mass (see Fig. 1). After optimization, we obtain the glueball masses (lattice unit) mϕ = 0.6857(28)
(SU(2), β = 2.5, 1045000 confs.), mϕ = 0.976(10) (SU(3), β = 5.7, 158641 confs.), and mϕ =

0.776(11) (SU(4), β = 10.789, 176000 confs.), consistent with previous works [8, 16].
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Figure 1: Effective mass plot of the 0++ glueball two-point functions in β = 2.5 SU(2) YMT (1045000
confs, left panel), and in β = 10.789 SU(4) YMT (176000 confs, right panel) on 163 ×24 lattices.

The interglueball scattering is extracted from the following Nambu-Bethe-Salpeter (NBS) am-
plitude:

Ψϕϕ (t, x⃗− y⃗)≡ 1
V ∑⃗

r
⟨0|T [ϕ̃(t, x⃗+ r⃗)ϕ̃(t, y⃗+ r⃗)J (0)]|0⟩. (3.4)

Here J is the source operator with arbitrary power of 0++ glueball operators. This arbitrariness is
due to the coupling of the two-glueball state with all other multi-glueball states. We note that the
multi-glueball operators have their own expectation values, so they must also be subtracted. From
the following relation

⟨0|T [[Osnk(t ,⃗r)−⟨Osnk(t ,⃗r)⟩][Osrc(0)−⟨Osrc(0)⟩]]|0⟩
= ⟨0|T [[Osnk(t ,⃗r)−⟨Osnk(t ,⃗r)⟩]Osrc(0)|0⟩= ⟨0|T [Osnk(t ,⃗r)[Osrc(0)−⟨Osrc(0)⟩]]|0⟩, (3.5)

we see that it is sufficient to remove the expectation value of the source J to also subtract the
one of the sink. We plot in Fig. 2 the NBS amplitude with the 1-, 2-, and 3-body sources in the
SU(2) YMT. We see that they damp at long interglueball distance. We also remark that for the
cases with 2- and 3-body sources the NBS amplitudes are nonzero at long distance. This is because
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the four-point (2-body source) and five-point (3-body source) functions can be cluster decomposed
into nonzero correlator when the two sink operators are separated by a large distance, while the
three-point (1-body source) correlator cannot.
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Figure 2: NBS amplitudes calculated with 1-, 2-, and 3-body wall sources in SU(2) YMT (1045000 confs.).
The data were taken at the time slice t = 1 (t = 0 is the origin).

In the indirect (HAL QCD) method, the physical scattering cross section is extracted from
the interglueball potential. It can be obtained by observing that the NBS amplitude fulfills the
Schrödinger equation [22, 23]. Here we use the time-dependent formalism [24][

1
4mϕ

∂ 2

∂ t2 −
∂
∂ t

+
1

mϕ
∇2

]
R(t ,⃗r) =

∫
d3r′U (⃗r,⃗r′)R(t ,⃗r′), (3.6)

with R(t ,⃗r) ≡ Ψϕϕ (t ,⃗r)/e−2mϕ t . Here we take the local approximation U (⃗r,⃗r′) ≈ Vϕϕ (⃗r)δ (⃗r− r⃗′).
The important point of this approach is that we do not need to wait for the ground state saturation
to obtain the potential. Since Eq. (3.6) involves a second time derivative, we need three time slices
to derive Vϕϕ (⃗r). We choose t = 1,2,3 in our calculation (t = 0 is the origin). In Fig. 3, we show
the interglueball potential calculated in the indirect method.

The statistical error of glueball correlators is large due to the unsuppressed fluctuation of glue-
ball operators at large space-time separation. The CDERT [25] can reduce such unwanted effect
by applying a cutoff ρ to the four-dimensional distance between glueball interpolating fields so as
to not sum up the components of correlator which are cluster decomposed. In Fig. 4, we show
the application of the CDERT to the glueball two-point function. The correlator saturates at ρ = 8
(lattice unit) for SU(2) YMT with β = 2.5. This cutoff is optimal since larger cutoff enlarges the
statistical error bar.
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Figure 3: Comparison of the 1-body and 2-body source calculations of the interglueball potential in SU(2)
(β = 2.5, 1045000 confs., upper left panel), SU(3) (β = 5.7, 158641 confs., upper right panel), and SU(4)
(β = 10.789, 176000 confs., lower panel) YMTs.
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Figure 4: Glueball two-point function (smeared source and sink, 100 confs.) in β = 2.5 SU(2) YMT
calculated with the CDERT. We see that the correlator saturates at the cutoff ρ = 8, and further increase of
ρ enlarges the statistical error.

We now apply the CDERT to the NBS amplitude with the 1-body source:

Ψ′
ϕϕ (t, x⃗− y⃗) =

1
V ∑⃗

r
∑

r⃗src∈C(t ,⃗x+⃗r)
∪

C(t ,⃗y+⃗r)
⟨0|T [ϕ̃(t, x⃗+ r⃗)ϕ̃(t, y⃗+ r⃗)ϕ̃(0,⃗rsrc)]|0⟩. (3.7)

Here C(t, v⃗) is the projection of the four-dimensional hypersphere with the center (t, v⃗) and with
the radius (cutoff) ρ onto the t = 0 three-dimensional hyperplane. The cutoffs are applied to the
relative four-dimensional distances between the source operator and the sink ones. In Fig. 5, we
compare the calculation of the NBS amplitude within the CDERT with that with the wall source.
We see that the CDERT is efficient in reducing the statistical error.
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Figure 5: Comparison between the interglueball NBS amplitude and the potential (β = 2.5 SU(2) YMT)
calculated in the CDERT with the cutoff ρ = 8 and the wall source calculation. The notation “full AMA”
means that the NBS amplitude was averaged over all possible spatial translation, while “e/o-AMA” denotes
that we took the average over even (odd) lattice for even (odd) time slices.

4. Results
After calculating the interglueball potential in SU(2) YMT with the CDERT, we fit it with

some adequate functionals to extract the scattering phase shift. Here we use two fitting forms which

depend on the glueball mass, namely VY (r) =V1
e−mϕ r

r and VY G(r) =V1
e−mϕ r

r +V2e−
(mϕ r)2

2 . We then

obtain (in lattice unit) VY (r) = 38.2(2.1) e−mϕ r

r (χ2/d.o.f. = 12.6) and VY G(r) = 219.1(15.1) e−mϕ r

r −

68.2(5.6)e−
(mϕ r)2

2 (χ2/d.o.f. = 3.1), with the statistical error in parenthesis (see Fig. 6).
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Figure 6: Fit of the 0++ interglueball potential in SU(2) YMT where the CDERT was applied with the
cutoff ρ = 8. The notation “e/o-AMA” is the same as in Fig. 5.

Now that we have the analytic form of the potential, we calculate the scattering phase shift and
the cross section. From the fitted potential, we calculate the scattering phase shift by solving the
Schrödinger equation: [

∂ 2

∂ r2 + k2 −mϕV (r)
]

ψ(r) = 0. (4.1)

The solution of the above equation has the asymptotic behavior ψ(r) ∝ sin[kr + δ (k)], with the
scattering phase shift δ (k). Since the DM is nonrelativistic, k may be considered as small, so the
s-wave cross section is obtained as σϕϕ = limk→0

4π
k2 sin2[δ (k)]. With the two fitting forms, we have

σϕϕ = (3.2−3.4)Λ−2 (VY fit) and σϕϕ = (6.7−7.1)Λ−2 (VY G fit). The band denotes the statistical
error. Combining the above two, the interglueball scattering cross section in SU(2) YMT is

σϕϕ = (3.2−7.1)Λ−2 (stat.+ sys.), (4.2)
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where the difference between the two fits were considered as the systematics.
Now that we have the relation between the cross section and Λ, the constraint on the scale

parameter can be derived from observational data. The comparison between the simulation and
the observation of the shape of the galactic halo [29] and galactic collisions [30] gives the limit
σDM/mDM < 1cm2/g. By equating it with our result (4.2), this yields a lower limit to the scale
parameter of SU(2) YMT Λ > 50MeV. We do not calculate the constraints for SU(3) and SU(4)
YMTs due to the large statistical error. Instead, we estimate them according to the large Nc argu-
ment, using the fact that the cross section scales as 1/N4

c . We then have ΛNc > (2/Nc)
4
3 ×50MeV.

We note that the correction of the 1/Nc expansion is O(N−2
c ), which is not small at Nc = 2.

5. Summary

In this proceedings contribution, we reported on the result of our on-going calculation of the
interglueball potential and cross section in the SU(Nc) (Nc = 2,3,4) YMTs, which are good can-
didates to explain the DM physics. Using the HAL QCD method, we could calculate the relation
between the interglueball cross section and the scale parameter of SU(2) YMT. Combining with
the observational data, we could obtain a lower limit on it. To complete the study for all Nc with
sufficient accuracy, we definitely have to perform the same analysis for lower Nc, including the
on-going calculations of SU(3) and SU(4) YMTs, which will provide us a better extrapolation.
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Information Infrastructures” (JHPCN) in Japan (Project ID: jh180058-NAH). The calculations
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