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According to recent studies on resurgence scenario of quantum systems, some topological objects
with fractional charges play an important role to see the resurgence structure. In this talk, we
report a numerical evidence of the fractional-instantons of the SU(3) gauge theory. The fractional-
instanton appears in a weak coupling regime, if the theory is regularized by an infrared (IR) cutoff
via the 1-form twisted boundary conditions. The Polyakov loop is also measured to investigate the
center symmetry and confinement. The fractional-instanton corresponds to a solution linking two
of degenerate Z3-broken vacua in the deconfinement phase. This talk is based on the paper [1].
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1. Introduction

It is well-known that a perturbative series for some (asymptotically free) quantum field the-
ories, which include SU(N) gauge theories, diverge even in weak coupling regime. Moreover,
some imaginary ambiguities remain even after utilizing the Borel resummation technique [2].
“Resurgence scenario" proposes a cancelation between the perturbative and some nonperturbative
contributions to such imaginary ambiguities for physical observables. One of the most convinc-
ing nonperturbative objects, which contributes the cancelation, is bion and/or fractional instan-
ton [3, 4, 5, 6]. The lattice SU(N) gauge theories seems to be defined without any ambiguities.
However, if the imaginary ambiguity problem cannot be solved, then a uniqueness could not be
given in the continuum limit of the lattice calculation, since the continuum limit is define as β → ∞
with keeping a physical observable constant.

In this work, we show the existence of the fractional instantons for the SU(3) gauge theory in
weak coupling regime (g2 ∼ 0.7). A key is the deformed spacetime by two-dimensional 1-form
twisted boundary conditions, that gives a novel type of saddle points of the action. Such a semi-
classical solution of the eq.o.m has been predicted on T3 ×R in Refs. [7, 8] . Under the boundary
condition the following extended ZN-transformation for gauge parameter is allowed in a compact
direction, here it denotes z-direction:

Λ(n+ ẑNs) = e2πilz/NcΛ(n), lz = 0,1, · · · ,Nc −1. (1.1)

Then, the gauge equivalent configuration with standard perturbative one has a topological charge,

Q =
1

8π2

∫
Tr(F ∧F) =

lzn′

Nc
+ integer. (1.2)

Thus, if lz is not a multiple number of Nc, then Q can be fractional number. Simultaneously, the
Polyakov loop in z-direction transforms

Pz → e2πilz/NcPz. (1.3)

Again, if lz is not a multiple number of Nc, then the phase of the Polyakov loop remains. Therefore,
if the fractional instanton appears, then the Polyakov loop rotates in the complex plane.

A similar fractional instanton under the twisted boundary conditions for several directions in
a different SU(N) gauge theory has also reported in Refs. [9, 10, 11] .

2. Simulation detail

We utilize the Wilson-Plaquette gauge action and set lattice parameters as (β ,Ns,Nτ ) = (16.0,12,60).
The lattice set up is determined to satisfy the following conditions:
(1) the twisted boundary conditions on the two spatial dimensions to introduce the IR cutoff and to
kill the torons
(2) sufficiently large lattice extent to generate multiple topological objects
(3) tuned lattice gauge coupling to realize the perturbative regime
Actually, the present lattice set up corresponds to g2(1/Ls)≈ 0.7 [12] and also satisfies the Dunne-
Ünsal condition, NcLsΛ ≪ 2π , where it is expected that the system is in the weak coupling regime
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but still there are some nonperturbative features. The action density (SW/N3
s Nτ ) is roughly 0.048,

which is close to the classical limit, where the action takes a minimum value.
To collect the gauge configurations in a weak coupling regime, we have to take care of the

autocorrelation. Here, we prepare the 100 seeds of random-number generation, here we label
them as #1 – #100. We independently update O(103) sweeps using each random-number series.
Here, we call one sweep as a combination of one Pseudo-Heat-Bath (PHB) update and 10 over-
relaxation steps. We collect 100 configurations as samples in a fixed N-th sweep and label the
samples “conf.#” using its seed of the random-number series. For the comparison, we also generate
the other 100 configurations using the same method and the same lattice parameters, while the
boundary conditions are periodic for four directions. From now on, we use the term “TBC lattice”
to denote the lattice with (x,y,z,τ) = (twisted, twisted, periodic, periodic) boundaries, while the
term “PBC lattice” denotes the one with the periodic boundaries for all directions.

3. Results

3.1 Topological charge

The topological charge is measured by using the clover-leaf operator on the lattice:

Q =
1

32π2 ∑
x,y,z,τ

Trεµνρσ FµνFρσ (x,y,z,τ). (3.1)

We utilize the cooling method to obtain the topological charge. The discrepancy from an exact
integer value, at most (∆Q/Q) ≈ 0.04, comes from lattice artifacts. In this work, we neglect the
small discrepancy and approximate the value of Q in the plateau of the cooling steps to an integer
value. Now, we fix the number of cooling steps as 50 (N-cool = 50) and the number of sweeps as
2000.

All configurations on the PBC lattice have Q = 0, while some configurations have non-zero
Q on the TBC lattice. Q on the TBC lattice is distributed over −2 ≤ Q ≤ 3, and the number
of configurations with non-zero Q is 66 while the remaining 34 configurations live in the Q = 0
sector. We can classify the configurations into two types: Type-I for Q = 0 and Type-II for Q ̸= 0.
Furthermore, we find that the magnitude of topological charge on each lattice site strongly depends
on τ in several configurations. Taking the sum for the three-dimensional spaces, we define a local
charge,

q(τ) =
1

32π2 ∑
x,y,z

Trεµνρσ FµνFρσ (x,y,z,τ). (3.2)

We plot the local charge for several typical configurations in Fig. 1. The top-left panel shows the
local charge of the configuration in Type-I (conf.#2). We find that q(τ) is always zero for any τ
for all configurations in this type. Type-II configurations are further classified into three types:
Type-II(a) has a single peak (the top-right panel). Type-II(b) has several peaks (the bottom-left
panel). Type-II(c) it takes a continuous non-zero value (the bottom-right panel) In the case of
Type-II(a), the sum of q(τ) around the single peak agrees with the value of Q. For instance, the
confs.#1 (red-circle) and #17 (blue-square) have Q = +1 and Q = −1, respectively. These peaks
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Figure 1: Typical distributions of the local topological charges (q(τ)). The integer-instanton and integer-
anti-instanton are shown in the top-right panel. On the other hand, the topological charges are fractionalized
in the bottom-left panel (see also Eq. (3.3)).

can be interpreted as the integer-instanton and integer-anti-instanton, respectively. In the case of
Type-II(c), we cannot see an excess of q(τ) in spite of the fact that the sum of q(τ) for all τ gives
a nonzero integer.

The configurations in Type-II(b) are the most interesting. We can take the sum of q(τ) around
each peak by dividing whole the domain of τ into several domains, whose boundaries are defined
by the local minimum of |q(τ)|. Then, each sum is proportional to n/3 within ∆Q/Q ≈ 0.04 error,
where n is an integer. The confs.#4 (red-circle) and #24 (blue-square) plotted in Fig. 1 have the
total instanton number Q =−1 and Q =+2, respectively. We find

conf.#4 Q1 =
55

∑
τ=29

q(τ) =−0.343 ≈−1
3
, Q2 = Q−Q1 =−0.647 ≈−2

3
,

conf.#24 Q1 =
33

∑
τ=6

q(τ) = 1.269 ≈ 4
3
, Q2 = Q−Q1 = 0.656 ≈ 2

3
. (3.3)

Thus, some integer-instantons contain multiple fractional-instantons.

Next, we investigate the topology changing during the Monte Carlo updates. Typical results
for the topology changing are shown in Fig. 2. In all panels, the number of cooling processes is
fixed to 50. During the Monte Carlo updates from the 2100-th to 4000-th sweep, the total charge
changes as follows;

conf.#1 Q does not change (Q =+1),

conf.#91 Q =+2 → Q =+2 → Q =+1,

conf.#69 Q =−2 → Q =−1 → Q = 0.
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Figure 2: Example of the sweep dependence of the local topological charge (q(τ)). The magenta-triangle,
blue-square, and red-circle symbols denote the confs. #1,#91, and #69, respectively.

Meanwhile, the combination of the local charges shows rich variations;

conf.#1 (+1 with single peak)→ (+2/3,+1/3)→ (+2/3,+1/3),

conf.#91 (+2/3,+4/3)→ (+2/3,+2/3,+2/3)→ (+1/3,+2/3),

conf.#69 (−4/3,−2/3)→ (−1 with single peak)→ (q(τ) = 0).

Thus, multiple fractional-instantons merge into an integer-instanton and vice versa, and a fractional-
instanton with a large charge deforms into multiple fractional-instantons with a small charge.

3.2 Tunneling phenomena and fractional instanton

Now, let us investigate the relationship between the fractional instanton and Polyakov loop as
shown in §. 1. We introduce the Polyakov loop in the z-direction on each lattice site;

P̃z(x,y,τ) =
1

Nc
Tr

[
∏

j
Uz(x,y,z = j,τ)

]
,

≡ |P̃z(x,y,τ)|eiφ(x,y,τ). (3.4)

The histograms of φ(x,y,τ) for typical configurations are shown in Fig. 3. Here, the corresponding
data of the local charge are displayed in Fig. 1. In the case of Type-I and Type-II(a), P̃z(x,y,τ) on
all sites are located at one of the Z3-degenerate vacua.

On the other hand, in the case of Type-II(b) configurations, two of the Z3-degenerate vacua
are chosen. To see the manifest relationship between the fractional-instanton and the distribution
of the Polyakov loop, we plot the averaged complex phase ⟨φ(τ)⟩, which is defined by ⟨φ(τ)⟩ ≡
∑x,y φ(x,y,τ)/N2

s , for conf.#24 as a function of τ (the blue-circle symbols) in Fig. 4. We also
present the local topological charge q(τ) as the red-square symbols, where it is multiplied by 20
so as to be easily seen. We find that ⟨φ⟩ starts changing its value around the peak of the local
charge (q(τ)), where the fractional-instanton exists. This indicates that the fractional-instanton is
related to the rotation of the complex phase of Pz. That is the same as the properties of the classical
solutions on T3 ×R as shown in §. 1. We can therefore conclude that the fractional-instantons on
T3 ×R are obtained by the numerical simulations on T3 ×S1.

In the case of Type-II(c), the histogram of φ(x,y,τ) has three peaks at three degenerate vacua
equally. Here, we find that no clear τ-dependence exists in its distribution. We expect that the
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Figure 3: Histograms of φ(x,y,τ) for typical configurations, which are classified by the local charge (q(τ)).
The corresponding data of the local charge are shown in Fig 1.

0 10 20 30 40 50 60
τ

-4

-2

0

2

4
<ϕ(τ)> [rad]

20*q(τ)

2πn/3 [rad] , (n=1,0,-1)

Figure 4: τ-dependence of the averaged complex phase (blue-circle) and the local topological charge (red-
square) for conf.#24.

tunneling phenomena among three vacua occur also through x and y directions. Because the mag-
nitude of the Polyakov loop in all directions are located near the origin in the complex plane, it
means the center symmetry is dynamically restored. Such a dynamical restoration of the center
symmetry is predicted in Ref. [8] on T3 ×R spacetime. In our numerical calculation on T3 × S1

lattice, the configuration Type-II(c) is rare: three per one-hundred. If Type-II(c) is dominant in
the continuum and/or the S1 → R limits, then the center symmetry would be completely preserved
even in weak coupling regime. It is an important future work to find which type of configurations
remains in these limits.

We also focus on the other nonperturbative phenomenon: the confinement. The Polyakov
loop in the τ-direction also indicates the center-symmetric property, though it is possible to show
the spontaneous symmetry-breaking. Generally, the Polyakov loop is related to the free-energy of
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single (probe) quark, ⟨|Pτ |⟩ ∝ e−Nτ Fq . In the confinement phase, Fq is large and diverges in the
infinite-volume limit, so that ⟨|Pτ |⟩ ∼ 0 can be naively interpreted as a confinement. However, we
find that the smallness of |Pτ | comes from a large Nτ with a finite value of Fq, since the value of
⟨|Pτ |⟩ scales as a function of Nτ . It indicates the deconfinement property of the configurations on
the TBC lattice even though these configurations exhibit the center-symmetric.

4. Summary

We have studied the nonperturbative phenomena of the SU(3) gauge theory in the weak cou-
pling regime on T3 × S1 with the large aspect ratio between two radii. Introducing the 1-form
twisted boundary conditions into two directions realizes the perturbative standard vacuum on the
hypertorus and is related to the existence of the fractional-instantons. We can conclude that the
fractional-instantons in this work have the same properties as the ones of the classical solutions
given by the gauge equivalent of the standard perturbative vacua under the extended Z3 gauge
symmetry in the S1 → R limit. According to the analogy of the quantum mechanical models and
the low-dimensional quantum field theories, the existence of the fractional-instantons will give an
additional contribution to physical observables in the weak coupling regime and will solve the
imaginary-ambiguity problem of the perturbative expansion. Furthermore, the center-symmetric
property even in the weak coupling regime is promising to show the adiabatic continuity between
the weak and strong coupling regimes. We believe that these phenomena in the weak coupling
regime, which are found in this work, will play an important role to study the resurgence structure
of the SU(3) gauge theory.
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