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1. Introduction

This paper is an update of our previous papers [1, 2, 3, 4, 5]. Here, we present recent progress
in determination of |εK | with updated inputs from lattice QCD.

2. Input parameters: |Vcb|

In Table 1 (a) and (d), we present updated results for exclusive |Vcb| and inclusive |Vcb| respec-
tively. In Table 1 (a), we present results for exclusive |Vcb| of BELLE [6] and BABAR [7]. They
reported results obtained using both CLN and BGL methods, which turn out to be consistent with
each other.

In Table. 1 (c), we plot time evolution of the |Vcb| results for the CLN analysis (blue line) as
well as the BGL analysis (red line) for the B̄→ D∗`ν̄ decays. Here, the black cross symbols with
label Gambino represent results from Refs. [8, 9, 10], respectively. The brown square symbol with
label Grinstein represents results from Ref. [11]. The green circle symbol with label BELLE-17
represents results from Ref. [12]. The magenta circle symbols with label BELLE-18 represent
results from Ref. [6]. The green triangle symbols with label BELLE-19 represent results from
Ref. [13]. The orange diamond symbols with label BABAR represents results from Ref. [7]. In
2017 when Bigi, Gambino, and Schacht [8, 11] first raised a claim that there might be an incon-
sistency in exclusive |Vcb| between the CLN and BGL analyses on the BELLE-2017 tagged data
set of the B̄→ D∗`ν̄ decays, the BGL results seemed to be superficially consistent with those for
inclusive |Vcb|. However, the 2019 analyses of both BELLE [6] (on the untagged data) and BABAR
[7] show that the results of the BGL analysis might be consistent with those of the CLN analysis,
which denies the previous claim of Refs. [8, 11]. The pink dashed line with label FLAG-19 repre-
sents preliminary results of BELLE-18 which the FLAG 2019 report took over to do their analysis
on |Vcb|. Hence, if you are to use the |Vcb| results of FLAG 2019, please do it with proper caution,
since they might be out of date. The green dashed line with label SWME-19 represents results of
BELLE-19 [6] which we use for the analysis on εK in this paper.

In Table 1 (b), we show the plot made by HFLAV. Results on this plot are available on the web
[14], but not published in any journal yet. Recently, there has been an interesting claim that the
|Vcb| puzzle might be resolved if we include O(1/m2

c) corrections in the data analysis [15].

3. Input parameter ξ0

The absorptive part of long distance effects on εK is parametrized into ξ0.

ξ0 =
ImA0

ReA0
, ξ2 =

ImA2

ReA2
, Re

(
ε ′

ε

)
=

ω√
2|εK |

(ξ2−ξ0) . (3.1)

There are two independent methods to determine ξ0 in lattice QCD: the indirect and direct methods.
The indirect method is to determine ξ0 using Eq. (3.1) with lattice QCD results for ξ2 combined
with experimental results for ε ′/ε , εK , and ω . The direct method is to determine ξ0 directly using
the lattice QCD results for ImA0, combined with experimental results for ReA0. In Table 1 (e),
we summarize results for ξ0 calculated by RBC-UKQCD. Here, we use the results of the indirect
method for ξ0 to evaluate εK , since its systematic and statistical errors are much smaller.
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channel method value Ref.

combined 39.13(59) HFLAV-17 [16]

combined 39.25(56) HFLAV-19 [14]

B̄→ D∗`ν̄ CLN 38.4(2)(6)(6) BELLE-19 [6]

B̄→ D∗`ν̄ BGL 38.3(3)(7)(6) BELLE-19 [6]

B̄→ D∗`ν̄ CLN 38.40(84) BABAR-19 [7]

B̄→ D∗`ν̄ BGL 38.36(90) BABAR-19 [7]

(a) Exclusive |Vcb| in units of 10−3.
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(c) CLN versus BGL.

channel value Ref.

kinetic scheme 42.19(78) [16]

1S scheme 41.98(45) [16]

(d) Inclusive |Vcb| in units of 10−3.

method ξ0 Ref.

indirect −1.63(19)×10−4 [17]

direct −0.57(49)×10−4 [18]

(e) Results for ξ0.

Table 1: Results for |Vcb|: (a) exclusive |Vcb|, (b) |Vcb| versus |Vub|, (c) Time evolution for exclusive
|Vcb| obtained using CLN and BGL, and (d) inclusive |Vcb|; (e) results for ξ0.

4. Input parameters: Wolfenstein parameters, B̂K , ξLD, and others

WP CKMfitter UTfit AOF

λ 0.22475(25) [19] 0.22500(100) [20] 0.2243(5) [21]

ρ̄ 0.1577(96) [19] 0.148(13) [20] 0.146(22) [22]

η̄ 0.3493(95) [19] 0.348(10) [20] 0.333(16) [22]

(a) Wolfenstein parameters

Input Value Ref.

ηcc 1.72(27) [2]

ηtt 0.5765(65) [23]

ηct 0.496(47) [24]

(b) ηi j

Table 2: (a) Wolfenstein parameters and (b) QCD corrections: ηi j with i, j = c, t.

In Table 2 (a), we present the Wolfenstein parameters on the market. As explained in Ref. [1,
5], we use the results of angle-only-fit (AOF) in Table 2 (a) in order to avoid unwanted correlation
between (εK , |Vcb|), and (ρ̄, η̄). We determine λ from |Vus| which is obtained from the K`2 and
K`3 decays using lattice QCD inputs for form factors and decay constants. We determine the A
parameter from |Vcb|.

In FLAG 2019 [25], they report lattice QCD results for B̂K with N f = 2, N f = 2+ 1, and
N f = 2+ 1+ 1. Here, we use the results for B̂K with N f = 2+ 1, which is obtained by taking an
average over the four data points from BMW 11, Laiho 11 RBC-UKQCD 14, and SWME 15 in
Table 3 (a).
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Collaboration Ref. B̂K

SWME 15 [26] 0.735(5)(36)

RBC/UKQCD 14 [27] 0.7499(24)(150)

Laiho 11 [28] 0.7628(38)(205)

BMW 11 [29] 0.7727(81)(84)

FLAG 2019 [25] 0.7625(97)

(a) B̂K

Input Value Ref.

GF 1.1663787(6)×10−5 GeV−2 PDG-19 [21]

MW 80.379(12) GeV PDG-19 [21]

θ 43.52(5)◦ PDG-19 [21]

mK0 497.611(13) MeV PDG-19 [21]

∆MK 3.484(6)×10−12 MeV PDG-19 [21]

FK 155.7(3) MeV FLAG-19 [25]

(b) Other parameters

Table 3: (a) Results for B̂K and (b) other input parameters.
Collaboration N f mc(mc) Ref.

FLAG 2019 2+1 1.275(5) [25]

FLAG 2019 2+1+1 1.280(13) [25]

(a) mc(mc) [GeV]

Collaboration Mt mt(mt) Ref.

PDG 2018 173.0±0.4 163.17±0.38±0.17 [21]

PDG 2019 172.9±0.4 163.08±0.38±0.17 [21]

(b) mt(mt) [GeV]

Table 4: Results for (a) charm quark mass and (b) top quark mass.

The dispersive long distance (LD) effect is defined as

ξLD =
m′LD√
2∆MK

, m′LD =−Im

[
P ∑

C

〈K0|Hw|C〉〈C|Hw|K0〉
mK0−EC

]
(4.1)

As explained in Refs. [1], there are two independent methods to estimate ξLD: one is the BGI
estimate [30], and the other is the RBC-UKQCD estimate [31, 32]. The BGI method is to estimate
the size of ξLD using chiral perturbation theory as follows,

ξLD =−0.4(3)× ξ0√
2

(4.2)

The RBC-UKQCD method is to estimate the size of ξLD as follows,

ξLD = (0±1.6)%. (4.3)

Here, we use both methods to estimate the size of ξLD.
In Table 2 (b), we present higher order QCD corrections: ηi j with i, j = t,c. A new approach

using u− t unitarity instead of c− t unitarity appeared in Ref. [33], which is supposed to have a
better convergence with respect to the charm quark mass. Here, we have not incorporated this into
our analysis yet, but will do it in near future.

In Table 3 (b), we present other input parameters needed to evaluate εK . Here, the W boson
mass MW and the kaon decay constant FK have been updated since Lattice 2018. In Table 4, we
present the charm quark mass mc(mc) and top quark mass mt(mt). From FLAG 2019 [25], we take
the results for mc(mc) with N f = 2+1, since there is some discrepancy in those with N f = 2+1+1.
For the top quark mass, we use the PDG 2019 results to obtain mt(mt).

5. Results for εK

In Fig. 1, we show results for |εK | evaluated directly from the standard model (SM) with lattice
QCD inputs given in the previous sections. In Fig. 1 (a), the blue curve represents the theoretical
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1 1.5 2 2.5

2σ 3σ 4σ 5σ

(a) Exclusive |Vcb| (BELLE-19, CLN)

1.5 2 2.5 3

2σ 3σ 4σ 5σ

(b) Inclusive |Vcb| (1S scheme)

Figure 1: |εK | with (a) exclusive |Vcb| (left) and (b) inclusive |Vcb| (right) in units of 1.0×10−3.

evaluation of |εK | obtained using the FLAG-2019 results for B̂K , AOF for Wolfenstein parameters,
the (BELLE-19, CLN) results for exclusive |Vcb|, and the RBC-UKQCD estimate for ξLD. The red
curve in Fig. 1 represents the experimental results for |εK |. In Fig. 1 (b), the blue curve represents
the same as in Fig. 1 (a) except for using the 1S scheme results for the inclusive |Vcb|.

Our results for |εK |SM are summarized in Table 5. Here, the superscript SM represents the
theoretical expectation value of |εK | obtained directly from the SM. The superscript Exp represents
the experimental value of |εK | = 2.228(11)× 10−3. Results in Table 5 (a) are obtained using the
RBC-UKQCD estimate for ξLD, and those in Table 5 (b) are obtained using the BGI estimate for
ξLD. In Table 5 (a), we find that the theoretical expectation values of |εK |SM with lattice QCD
inputs (with exclusive |Vcb|) has 4.6σ ∼ 4.2σ tension with the experimental value of |εK |Exp, while
there is no tension with inclusive |Vcb| (obtained using heavy quark expansion and QCD sum rules).

|Vcb| method reference |εK |SM ∆εK

exclusive CLN BELLE-19 1.456±0.172 4.47σ

exclusive BGL BELLE-19 1.443±0.181 4.32σ

exclusive CLN BABAR-19 1.456±0.169 4.55σ

exclusive BGL BABAR-19 1.451±0.175 4.44σ

exclusive combined HFLAV-19 1.576±0.154 4.23σ

inclusive kinetic HFLAV-17 2.060±0.212 0.79σ

inclusive 1S HFLAV-17 2.020±0.176 1.18σ

(a) RBC-UKQCD estimate for ξLD

|Vcb| method reference |εK |SM ∆εK

exclusive CLN BELLE-19 1.501±0.174 4.16σ

exclusive BGL BELLE-19 1.488±0.183 4.04σ

(b) BGI estimate for ξLD

Table 5: |εK | in units of 1.0×10−3, and ∆εK = |εK |Exp−|εK |SM.
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In Fig. 2 (a), we show the time evolution of ∆εK starting from 2012 to 2019. In 2012, ∆εK was
2.5σ , but now it is 4.5σ with exclusive |Vcb| (BELLE-19, CLN). In Fig. 2 (b), we show the time
evolution of the average ∆εK and the error σ∆εK during the period of 2012–2019.
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NNLO ηct

NNLO ηcc

updated Vcb

RBC-UK ξ0

FLAG B̂K

updated Vcb

UTfit ρ̄, η̄, λ updated FK ,

mK0 , mt
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(a) Time evolution of ∆εK/σ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2012 2013 2014 2015 2016 2017 2018 2019

T

∆εK
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(b) Time evolution of the average and error of ∆εK

Figure 2: Time history of (a) ∆εK/σ , and (b) ∆εK and σ∆εK .

At present, we find that the largest error (≈ 50%) in |εK |SM comes from |Vcb|. Hence, it is of
crucial importance to reduce the error in |Vcb| significantly. To achieve this goal, there is an on-
going project to extract exclusive |Vcb| using the Oktay-Kronfeld (OK) action for the heavy quarks
to calculate the form factors for B̄→ D(∗)`ν̄ decays [34, 35, 36, 37, 38].
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