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Chiral Ward identities for staggered fermions Hwancheol Jeong

parameter value
gluon action tree level Symanzik [6–8]

tadpole improvement yes
β 5.0

geometry 204

a 0.077 fm
valence quarks HYP staggered fermions [9–11]

N f 0 (quenched QCD)

Table 1: Input parameters for the numerical study. For more details, refer to Ref. [12].

1. Introduction

Here, we present recent progress in understanding chiral properties of staggered Dirac eigen-
modes based on our previous works in Refs. [1, 2].

2. Eigenvalues of Dirac operators with staggered fermions

Let us consider Dirac operator Ds for staggered fermions. Since Ds is anti-Hermitian, eigen-
values of Ds are purely imaginary or zero:

Ds| fλ 〉= iλ | fλ 〉 , (2.1)

where λ is real, and | fλ 〉 is an eigenvector with its eigenvalue iλ .
Ds also anti-commutes with the operator Γε = [γ5 ⊗ ξ5] which is the generator for U(1)A

symmetry. Here, we adopt the same notation as in Ref. [1]. Since Γε anti-commutes with Ds, one
can show that an eigenstate | fλ 〉 with λ 6= 0 has its partner state | f−λ 〉 with eigenvalue −iλ [1].
The partner eigenvector | f−λ 〉 can be obtained by applying Γε to the eigenvector | f+λ 〉 with phase
difference:

Γε | f+λ 〉= e+iθ | f−λ 〉 , Γε | f−λ 〉= e−iθ | f+λ 〉 . (2.2)

Here, the phase θ is real, and also turns out to be arbitrary [1].
In practice, we do not calculate eigenvalues of Ds directly. Instead, we use a Hermitian and

positive semi-definite operator D†
s Ds, which satisfies

D†
s Ds |gλ 2〉= λ

2 |gλ 2〉 . (2.3)

The corresponding eigenvectors | f±λ 〉 are obtained by decomposing the eigenvector |gλ 2〉 using
the projection operators as in Ref. [1]. Since D†

s Ds is Hermitian, one can make use of Lanczos
algorithm [3] to calculate its eigenvalues and eigenvectors. Here, we use the implicitly restarted
Lanczos [4] with acceleration by Chebyshev polynomial [5].

All the numerical calculations are performed on the gauge ensemble described in Table 1.
We use HYP staggered fermions as valence quarks which reduce the taste-breaking for staggered
fermions, and thus show improved chiral behaviors [12–15].

Meanwhile, the index theorem [16] states that

Qt = n−−n+ , Qt =
1

32π2

∫
E

d4x εαβ µν Tr (Fαβ Fµν) (2.4)
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Figure 1: Eigenvalue spectra of staggered Dirac operator on gauge configurations with Qt = 0 and
Qt =−1. Here, i represents an index of eigenvalue λi.

where Qt is the topological charge [17], the subscript E represents the Euclidean space, and n+ (n−)
is the number of zero modes with right-handed (left-handed) helicity. In the continuum, Eq. (2.4)
indeed comes from the axial Ward identity [2]. For staggered fermions, a similar relation holds
but four-fold degeneracy which comes from the approximate SU(4) taste symmetry should be
counted [1]:

Qt =
1
4
(ns
−−ns

+) , (2.5)

where ns
± represent the number of zero modes with right-handed (+) and left-handed (−) helicities

for staggered quarks. Here, ns
± must be multiples of four due to the taste symmetry.

3. Eigenvalue spectrum

In Fig. 1, we present tens of low-lying eigenvalues of the Dirac operator with HYP staggered
quarks on gauge configurations with topological charges Qt = 0,−1. Here, we measure Qt using
the Q(5Li) operator defined in Ref. [18, 19] after 10 ∼ 30 iterations of the APE smearing with
α = 0.45 [20–22]. In the plot, eigenvalues are sorted in ascending order of their absolute values
|λi|. Here, we assign the index (2n) of the eigenvalue such that it satisfies λ2n =−λ2n−1. Even the
would-be zero modes have tiny but nonzero values of λi at finite lattice spacing a 6= 0. Hence, each
eigenvalue has its parity partner with opposite sign even though it belongs to the would-be zero
modes. The solid green line for Qt =−1 is drawn at the boarder between the would-be zero modes
and the nonzero modes.

For would-be zero modes, their eigenvalues are exactly zero in the continuum limit, and so
they are their own parity partners by themselves. The number of the would be zero modes must be
multiple of four since the SU(4) taste symmetry is exactly conserved in the continuum. In Fig. 1b,
one can see the would-be zero modes appear with four-fold degeneracy. For nonzero modes, one
eigenvalue must have four-fold degeneracy due to the SU(4) taste symmetry in the continuum,
and its U(1)A parity partner should have the same four-fold degeneracy. Hence, for each nonzero
eigenvalue, it has a set of eight-fold degeneracy due to the exact U(1)A symmetry on the lattice
and the SU(4) taste symmetry in the continuum. In Fig. 1, one can see the nonzero modes show up
with eight-fold degeneracy.
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Figure 2: Γ5(λi) for various topological charges. Here, i represents an index of eigenvalue λi.

4. Chirality for staggered fermions

Let us consider three chirality operators: Γε , Γ5, and Ξ5 defined as

Γε ≡ [γ5⊗ξ5] , Γ5 ≡ [γ5⊗1] , Ξ5 ≡ [1⊗ξ5] . (4.1)

Γε represents a chirality of the conserved U(1)A symmetry for staggered fermions. A taste singlet
operator Γ5 corresponds to the generator for the anomalous U(1)anom

A symmetry in the continuum.
Similarly, Ξ5 represents the parity partner for the chirality operator Γ5.

The Γε , Γ5, and Ξ5 operators satisfy the same relations as the continuum chirality operator γ5

as follows,

(Γ)2n+1 = Γ , (Γ)2n = 1 , (4.2)

where Γ ∈ {Γε ,Γ5,Ξ5}. Furthermore, they are related to each other by

Γε = Γ5 Ξ5 ; Γ5 = Ξ5 Γε ; Ξ5 = Γ5 Γε . (4.3)

These properties insure that they are the best choice to examine the chiral symmetry for staggered
fermions.

Let us define the chirality as

Γ5(α,β )≡ 〈 fα |[γ5⊗1]| fβ 〉 , Γ5(λi)≡ Γ5(λi,λi) . (4.4)

In Fig. 2, we measure the chirality Γ5(λi) for topological charges Qt = 0,−1,−2,−3, respectively.
Comparing with Fig. 1, the would-be zero modes has a non-trivial chirality around 0.8 in magni-
tude, while nonzero modes have values of Γ5(λi) close to zero. Consequently, would-be zero modes
are manifestly distinguishable from nonzero modes by the Γ5 chirality as shown in Ref. [12–14].
The magnitudes of the chirality for would-be zero modes are somewhat smaller than one, the con-
tinuum expectation value. It is because the Γ5 operator is not conserved at a 6= 0 and receives a
finite renormalization on the lattice.
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parameter value

|Γ5(λ1,λ1) | 0.8238257

|Ξ5(λ2,λ1) | 0.8238257

|Ξ5(λ1,λ2) | 0.8238257

|Γ5(λ2,λ2) | 0.8238257

(a) Diagonal WI

parameter value parameter value

|Γ5(λ75,λ70) | 0.5008622 |Γ5(λ70,λ75) | 0.5008622

|Ξ5(λ69,λ75) | 0.5008622 |Ξ5(λ75,λ69) | 0.5008622

|Ξ5(λ70,λ76) | 0.5008622 |Ξ5(λ76,λ70) | 0.5008622

|Γ5(λ69,λ76) | 0.5008622 |Γ5(λ76,λ69) | 0.5008622

(b) Off-diagonal WI

Table 2: Numerical demonstration of chiral Ward identity (WI) in Eq. (5.8). Here, λ2 = −λ1,
λ70 =−λ69, λ76 =−λ75.

5. Chiral Ward identity

Rewriting Eqs. (2.2) by implementing Eq. (4.2) and Eq. (4.3), we obtain the following chiral
Ward identities for staggered fermions:

Γ5 | f+λ 〉= e+iθ
Ξ5 | f−λ 〉 , Γ5 | f−λ 〉= e−iθ

Ξ5 | f+λ 〉 . (5.1)

Let us define the chirality matrix elements sandwiched between the two eigenvectors as

Γε(α,β )≡ 〈 fα |Γε | fβ 〉= 〈 fα |[γ5⊗ξ5]| fβ 〉 , (5.2)

Γ5(α,β )≡ 〈 fα |Γ5| fβ 〉= 〈 fα |[γ5⊗1]| fβ 〉 , (5.3)

Ξ5(α,β )≡ 〈 fα |Ξ5| fβ 〉= 〈 fα |[1⊗ξ5]| fβ 〉 . (5.4)

Using the Ward identity of Eqs. (5.1), we rewrite the chirality matrix elements as follows,

Γ5(α,+β ) = e+iθβ Ξ5(α,−β ) , Γ5(α,−β ) = e−iθβ Ξ5(α,+β ) , (5.5)

Γ5(+α,β ) = e−iθα Ξ5(−α,β ) , Γ5(−α,β ) = e+iθα Ξ5(+α,β ) . (5.6)

If we take the norm of them, then

| Γ5(α,β ) |= | Ξ5(α,−β ) |= | Ξ5(−α,β ) |= | Γ5(−α,−β ) | . (5.7)

In addition, the Hermiticity insures interchanging α and β , which provides the final form of the
Ward identities:

| Γ5(α,β ) |= | Ξ5(α,−β ) |= | Ξ5(−α,β ) |= | Γ5(−α,−β ) |
= | Γ5(β ,α) |= | Ξ5(β ,−α) |= | Ξ5(−β ,α) |= | Γ5(−β ,−α) | . (5.8)

Table 2 shows how the chiral Ward identities of Eq. (5.8) works in our numerical study. Here, it
confirms that they are valid within our numerical precision.

6. Leakage of chirality

Here, we focus on off-diagonal elements (α 6= β ) of chirality Γ5(α,β ) and Ξ5(α,β ). We are
interested in how much of the chirality of an eigenmode leaks into other eigenmodes. Traditionally,
the diagonal elements of chirality Γ5(λi) were measured and studied as in Ref. [12–14]. Here,
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Figure 3: Leakage patterns of would-be zero modes for the Γ5 operator.

we study on the off-diagonal elements of chirality Γ5(α,β ), and Ξ5(α,β ) with α 6= β . In the
continuum, the SU(4) taste symmetry is respected. The net consequence of the conserved taste
symmetry is that each nonzero eigenvalue has eight-fold degeneracy, and these eight degenerate
eigenmodes will mix with one another within the eight-fold degenerate members. In other words,
if |α| 6= |β |, then Γ5(α,β ) = Ξ5(α,β ) = 0 in the continuum (a = 0) thanks to the SU(4) taste
symmetry. However, at finite lattice (a 6= 0), the SU(4) taste symmetry is not exact, but mostly
respected near the continuum. Hence, the leakage from one set of the eight-fold degeneracy to
other set of eight-fold degeneracy will be very small near the continuum (a≈ 0). Therefore, it will
be very interesting to study this leakage pattern in the chirality measurement. Fig. 3 shows leakage
patterns of Γ5 for would-be zero modes. Here, we observe that for Γ5 there is only one non-trivial
signal at the would-be zero mode itself and there is almost no leakage to nearest zero and nonzero
eigenmodes.

For nonzero modes, leakage of the Γ5 operator for an eigenvalue λi is supposed to go into
the four-fold parity partners with eigenvalue −λi in the continuum. Near the continuum (a ≈ 0),
the SU(4) taste symmetry is almost respected and the leakage to eigenmodes outside the eight-
fold degeneracy is also almost prohibited. This kind of leakage patterns for nonzero eigenmodes
are presented in Fig. 4. In Fig. 4a, the leakage of the Γ5 chirality for the eigenmode | fλ5〉 goes
into the eigenmodes with eigenvalue −λ5: | fλ j〉 with j = 6,8,10,12, as the theory predicts. In
Fig. 4b, the leakage of the Γ5 chirality for the eigenmode | fλ135〉 goes into the eigenmodes with
eigenvalue −λ135: | fλ j〉 with j = 134,136,138,140. Here, we also observe a small effect of
the SU(4) taste symmetry breaking in that a small amount of leakage of the Γ5 chirality for the
eigenmode | fλ135〉 goes into eigenmodes outside of the eight-fold degeneracy such as | fλ j〉 with
j = 126,128,130,132,142,144.
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Figure 4: Leakage patterns of Γ5 for nonzero eigenmodes.
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7. Conclusion

We have studied Γ5 and Ξ5 chirality for eigenmodes of staggered fermions. Thanks to the Ward
identities, Γ5 chirality is completely correlated with Ξ5 chirality. We demonstrate how the leakage
patterns of Γ5 chirality can be used to distinguish zero eigenmodes and nonzero eigenmodes.
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