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1. Introduction

The real-time dynamics is one of the most important topics in modern physics, however, the
field theoretical approaches based on the path integral representation suffer from the severe sign
problem. So far several approaches have been proposed to overcome the sign problem. For exam-
ple, the complex Langevin method is used to study ϕ 4 scalar field theory [1] and the SU(2) gauge
theory [2] in 3+1 dimensional Minkowski space-time. In the course of studies, however, it turns
out that the convergence issue gets harder when the time extent is taken relatively larger. Recently,
the generalized Lefschetz thimble algorithm is used in the study of the 1+1 dimensional ϕ 4 theory
[5] with the Schwinger-Keldysh setup [3, 4]. This approach, however, also has a limitation on the
lattice size and it seems hard to perform larger volume simulations.

Tensor network method can also avoid the sign problem and is another promising approach.
The idea of tensor networks was invented in the condensate matter physics and developed with
a help of quantum information [6, 7, 8, 9]. Recently, the idea and technique have been used in
elementary particle physics. It is known that within a framework of the tensor networks there are
two types of approaches: the Hamiltonian approach and the Lagrangian one. The former one uses
a tensor network in an ansatz form of a trial wave function for the variational method, and the
real-time dynamics is studied in various two dimensional models [10, 11, 12]. The letter approach
is nothing but the path integral and we will use it in the following. The aim of the study here is to
demonstrate how to use the tensor network technique when evaluating the real-time path integral.
As a first trial, we work on 1+1 dimensional real scalar field theory with the Minkowskian metric.
In the following, we assume the lattice units a = 1.

2. Tensor network representation

We consider 1+1 dimensional square lattice system whose coordinate is denoted by x=(x0,x1)

with x0 = 0,1,2, ...,T −1 and x1 = 0,1,2, ...,L−1 for time and space respectively. In the following
T = L is assumed. The boundary condition for both directions is taken to be periodic just for a
simplicity, though this is not a physically meaningful setting. The one-component real scalar fields
on the lattice are denoted by ϕx ∈ R.

The lattice action for the 1+1 dimensional real scalar ϕ 4 theory with the Minkowskian metric
is given by

S[ϕ ] = ∑
x

[
1
2
(ϕx+0̂ −ϕx)

2 − 1
2
(ϕx+1̂ −ϕx)

2 −V (ϕx)

]
(2.1)

with the potential term

V (ϕ) =
1
2
(m2

0 − iε)ϕ 2
x +

λ
4!

ϕ 4
x , (2.2)

where m0,λ ∈R are the bare parameters and the Feynman prescription parameter ε (ε ∈R, ε > 0)
is introduced and this plays an important role when forming the tensor network representation as
we will see later. In an actual computation, note that we will have to take ε → 0 limit for a bare
physical quantity.
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In order to use the tensor network method, first of all, one has to rewrite the path integral in
terms of the tensor network representation. For that purpose, let us rewrite it as a product of local
factors,

Z ≡
∫
[dϕ ]eiS[ϕ ] =

∫
[dϕ ]∏

x
H(0)(ϕx,ϕx+0̂)H

(1)(ϕx,ϕx+1̂), (2.3)

where the local factors for the time-direction H(0) and for the space H(1) are explicitly given by1

H(0)(ϕ ,ϕ ′) = exp
[
−iϕϕ ′− i

4
V (ϕ)− i

4
V (ϕ ′)

]
, (2.4)

H(1)(ϕ ,ϕ ′) = exp
[
+iϕϕ ′− i

4
V (ϕ)− i

4
V (ϕ ′)

]
. (2.5)

They are considered as a two-variable function. An important property of the local factors is that
thanks to the presence of the Feynman prescription parameter they are Hilbert-Schmidt operator∫ ∞

−∞
dϕdϕ ′|H(µ)(ϕ ,ϕ ′)|2 < ∞ for µ = 0,1. (2.6)

This fact immediately means that they are compact operator and can be expanded as2

H(µ)(ϕ ,ϕ ′) =
∞

∑
k=0

Ψ(µ)
k (ϕ)σk Φ(µ)∗

k (ϕ ′), (2.7)

where Ψ and Φ are orthonormal basis function satisfying∫ ∞

−∞
dϕ Ψ∗

m(ϕ)Ψn(ϕ) =
∫ ∞

−∞
dϕ Φ∗

m(ϕ)Φn(ϕ) = δmn, (2.8)

∞

∑
k=0

Ψk(ϕ)Ψ∗
k(ϕ

′) =
∞

∑
k=0

Φk(ϕ)Φ∗
k(ϕ

′) = δ (ϕ −ϕ ′), (2.9)

and σk represents singular value and is non-negative [13, 14].
As a next step let us see how to obtain the basis functions and the singular values. First, we

expand H(µ)

H(µ)(ϕ ,ϕ ′) =
√

2π
∞

∑
m,n=0

ψm(ϕ)X (µ)
mn ψn(ϕ ′) (2.10)

in terms of the Hermite function ψm which is the eigen-function of the harmonic oscillator

ψn(x) =
1√

π1/2n!2n
Hn(x)e−x2/2, Hn(x) : Hermite polynomials, (2.11)

and satisfies the orthonormal and the completeness relations as in eq.(2.8) and (2.9). Basically H(µ)

are an oscillating function thus it is reasonable to use ψm as a basis since the latter is also such a

1Note that the phase factors exp(iϕ 2
x /2) associated with the kinetic terms has canceled in eq.(2.4) and (2.5).

2One can show that the singular value is independent of µ = 0,1. Moreover, it can be shown that it is independent
of the bare parameters m0 and λ since they are included in the phase factor in eq.(2.4) and (2.5). Therefore the singular
value is a function of only ε , while the bare parameter dependence are captured in the basis functions.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
0
3
3

Tensor network approach to real-time path integral Shinji Takeda

function. By using the orthonormal property of ψm, the coefficient matrix X (µ)
mn , which is a complex

valued symmetric matrix, is obtained as

X (µ)
mn =

1√
2π

∫ ∞

−∞
dϕdϕ ′ψm(ϕ)H(µ)(ϕ ,ϕ ′)ψn(ϕ ′). (2.12)

An evaluation of the double integral for such an oscillating function is rather technically demand-
ing, thus here we use a trick in the following. In order to separate the integration into two parts, we
use a formula3

e∓iϕϕ ′
=
√

2π
∞

∑
n=0

(∓i)nψn(ϕ)ψn(ϕ ′). (2.13)

By using the formula together with eq.(2.4) and (2.5), X (µ)
mn is given by

X (µ)
mn =

∞

∑
k=0

(−1)kδµ0 ikGmkGnk with Gmn =
∫ ∞

−∞
dϕψm(ϕ)ψn(ϕ)exp

[
− i

4
V (ϕ)

]
. (2.14)

The resulting single integration for Gmn, which is again a complex valued symmetric matrix, can
be exactly carried out for the free case and then Gmn is given by the hypergeometric function, while
for the interacting case it may be estimated by some numerical integration scheme with a suitable
deformation of integration path. After obtaining X (µ)

mn numerically, we apply SVD to it,

X (µ)
mn =

∞

∑
k=0

U (µ)
mk σk(V (µ)†)kn, with U (µ),V (µ) : unitary matrix. (2.15)

By inserting the above equation into eq.(2.10), H(µ) are given as

H(µ)(ϕ ,ϕ ′) =
√

2π
∞

∑
m,n=0

ψm(ϕ)

(
∞

∑
k=0

U (µ)
mk σk(V (µ)†)kn

)
ψn(ϕ ′)

=
√

2π
∞

∑
k=0

(
∞

∑
m=0

ψm(ϕ)U
(µ)
mk

)
σk

(
∞

∑
n=0

(V (µ)†)knψn(ϕ ′)

)

=
√

2π
∞

∑
k=0

Ψ(µ)
k (ϕ)σkΦ(µ)∗

k (ϕ ′), (2.16)

where in the last step, we have defined new basis functions

Ψ(µ)
k (ϕ) =

∞

∑
m=0

ψm(ϕ)U
(µ)
mk , Φ(µ)∗

k (ϕ) =
∞

∑
n=0

(V (µ)†)knψn(ϕ). (2.17)

In this way, the basis functions and the singular values are obtained. In an actual calculation, one
cannot deal with the infinite range of index for the matrix, thus one has to truncate it and should
monitor the truncation errors of some physical quantities. Note that the singular values of H(µ) are
the same as those of X (µ)

mn .
Final step is to obtain the tensor. By collecting all building blocks, the tensor is formed as

Ti jkl = 2π√σiσ jσkσl

∫ ∞

−∞
dϕΨ(0)

i (ϕ)Ψ(1)
j (ϕ)Φ(0)∗

k (ϕ)Φ(1)∗
l (ϕ). (2.18)

3This may be derived from eixp =
√

2π⟨x|p⟩=
√

2π ∑∞
n=0⟨x|n⟩⟨n|p⟩ and the Fourier transformation of the Hermite

function.
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Figure 1: Left panel: Singular values σk of H(µ)(ϕ ,ϕ ′) (or equivalently X (µ)
mn ) with ε = 0.1, 0.5 and 1. Right

panel: The absolute value of Re[Tiiii] and the imaginary part at λ = 0 and ε = 0.5 with various m0 values.

Note that the numbering of the basis function turns out to be an index of tensor i, j,k and l. Ba-
sically, the range of the indices is infinity but to put it on a computer one has to truncate it. The
truncation order is denoted as N and the index range is restricted as 0 ≤ i, j,k, l ≤ N in the follow-
ing. The integration in eq.(2.18) can be carried out exactly and it is given by the hypergeometric
function again.

3. Numerical results

The resulting singular values σk are shown in Fig. 1 (left). For large ε where a damping in the
integrand gets stronger, the hierarchy is sharper as expected, while for small ε , the hierarchy is not
clear and the information compression is not well realized.

To see the hierarchy structure of the tensor elements, Tiiii are shown in Fig. 1 (right). Basically
the size of elements tends to be exponentially small for larger i. This behavior allows us to truncate
the tensor index.

In order to check whether the initial tensor in eq.(2.18) is correctly made, we compute the path
integral on 2× 2 lattice with the periodic boundary condition. We show the real part of lnZ /4
in Fig. 2 (left). Here note that we did not use a coarse-graining, thus this is purely a check of
the initial tensor itself. The exact result and the numerical results with some truncation orders are
consistent with each other at this scale. Right panel of Fig. 2 shows the relative deviation from the
exact results

δ =

∣∣∣∣Re[lnZexact]−Re[lnZN ]

Re[lnZexact]

∣∣∣∣ . (3.1)

By increasing N, the deviation δ tends to be smaller. Note that for smaller ε , the deviation is larger
since the hierarchy of the singular value is not so good as seen before.
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Figure 2: Left panel: Re[lnZ ]/V on 2× 2 lattice as a function of ε with various truncation orders N =

16− 40 at m0 = 0.1 and λ = 0. The black line is the exact result. Right panel: The relative deviation for
Re[lnZ ] with the same parameter set as the left one.
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Figure 3: Left panel: Re[lnZ ]/V on (1024)2 lattice as a function of ε . Right panel: The associated relative
deviation. The parameter set is the same as that of Fig. 2.

The path integral at larger volumes can be obtained by using the tensor renormalization group
algorithm [15]. The results in Fig. 3 show that the coarse-graining step introduces visible errors.
This part should be improved by using some sophisticated algorithms in future .
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4. Summary and outlook

We have derived the tensor network representation for the scalar field theory with the Minkowskian
metric and numerically checked the validity of the formulation for the free case. One of the im-
portant point in the procedure is to expand the local factor H(µ) in terms of the orthonormal basis
functions. The another key point is to introduce the Feynman prescription ε that not only provides a
damping factor in the the path integral but also dictates the hierarchy of the singular values of H(µ).
Note that although there is no sign problem in the formulation here, another problem emerges as
an "information incompressibility problem" which means that the hierarchy of the singular value
tends to be worse for smaller ε . Furthermore we have to eliminate the regulator (ε → 0) in the end
of the calculation. This is what we have to pay a price in our formulation.

As future outlooks, there are many things to do. For example, when the ε is small, the initial
tensor has large truncation errors thus one may have to improve the initial tensor itself. Secondly,
when making the initial tensor for the interacting case, one needs an efficient numerical method
to evaluate the oscillating integral, say the steepest descent method and so on. Thirdly, instead
of the Feynman prescription, one may use the tilted time axis as a regulator. Finally, one may
straightforwardly extend to the Euclidean space as well as the Schwinger-Keldysh formulation in a
similar way. Once such a setup is formulated, the transportation coefficients will be accessible.

This work is supported in part by JSPS KAKENHI Grant Numbers JP17K05411 and MEXT as
“Exploratory Challenge on Post-K computer” (Frontiers of Basic Science: Challenging the Limits).
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