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We investigate the phase structure of a four dimensional SO(4) invariant lattice Higgs-Yukawa
model comprising four reduced staggered fermions interacting with a real scalar field. The
fermions belong to the fundamental representation of the symmetry group while the three scalar
field components transform in the self-dual representation of SO(4). We explore the phase dia-
gram and find evidence of a continuous transition between a phase where the fermions are mass-
less to one where the fermions acquire mass. This transition is not associated with symmetry
breaking and there is no obvious local order parameter.
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1. Lattice Action and Symmetries

Conventionally fermions acquire a mass gap through either explicit or spontaneous symmetry
breaking. It is well known that certain Higgs-Yukawa lattice models can be constructed that gap
fermions without breaking symmetries using strong four fermion interactions. However until re-
cently these symmetric massive phases have been regarded as lattice artifacts separated from the
continuum by broken symmetry phases and/or first order phase transitions. The model described
in this proceedings seems to circumvent these constraints and appears to offer the possibility of al-
lowing for a continuum limit in which fermions acquire mass without breaking symmetries. Apart
from the intrinsic interest in such a dynamics it opens up the possibility of formulating chiral lattice
fermions using the Eichten-Preskill approach described in [1].

The action for the model is

S =
∑
x

ψa[η.∆ab +Gσ+ab]ψ
b +

1

4

∑
x

(σ+ab)
2 − κ

4

∑
x,µ

[
σ+ab(x)σ+ab(x+ µ) + σ+ab(x)σ+ab(x− µ)

]
(1.1)

where repeated indices are to be contracted and ηµ(x) = (−1)
∑µ−1
i=1 xi are the usual staggered

fermion phases. The discrete derivative is

∆ab
µ ψ

b =
1

2
δab[ψb(x+ µ)− ψb(x− µ)]. (1.2)

The self-dual scalar field σ+ab is defined as

σ+ab = P+
abcdσcd =

1

2

[
σab +

1

2
εabcdσcd

]
(1.3)

with P+ projecting the antisymmetric matrix field σ(x) to its self-dual component which trans-
forms under only one of the SU(2) factors comprising SO(4). It is the presence of the additional
SU(2) symmetry of the fermion operator that allows one to prove the associated Pfaffian operator
is real, positive semi-definite and hence the model can be simulated without encountering a sign
problem.

When κ = 0 we can integrate out the scalar field and obtain the pure four fermi model studied
in Refs. [2, 3]. While a single peak is observed in a certain fermion susceptibility the eventual
consensus of this earlier work was that this peak straddled a very narrow symmetry broken phase
bordered by two phase transitions [4]. In Ref. [5] it was argued that it should be possible to
eliminate this broken phase by tuning an additional scalar kinetic term. In concrete terms it should
be clear from the form of the action that κ > 0 favors ferromagnetic ordering of the scalar field and
associated fermion bilinear. This is to be contrasted with the preferred antiferromagnetic ordering
observed in the earlier pure four fermi work. Hence by tuning κ it should be logically possible
to reach a phase with no spontaneous ordering of the fermion bilinear. Furthermore, general RG
arguments suggest that the renormalizability of the theory should necessitate the addition of such a
term. Results for this model appeared in Ref. [6].1

In addition to its manifest SO(4) symmetry, the action is also invariant under a shift symmetry

ψ(x)→ ξρψ(x+ ρ) (1.4)
1In 3d RG arguments do not require such a term and indeed no intermediate phase is seen [7].
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with ξµ(x) = (−1)
∑d
i=µ xi as well as a discrete Z2 symmetry:

σ+ → −σ+ (1.5)

ψa → iε(x)ψa. (1.6)

Both of the Z2 and SO(4) symmetries prohibit local bilinear fermion mass terms from appear-
ing as a result of quantum corrections. While non-local SO(4)-symmetric bilinear terms can be
constructed by coupling fields at different sites in the unit hypercube, such terms break the shift
symmetry. Further detailed discussion of possible bilinear mass terms is presented in Ref. [3].

2. Numerical Results
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Despite these constraints fermions can nevertheless pick up a mass via interaction with a sym-
metric four fermion condensate. The latter is shown in fig. 1a which plots the vev of the SO(4)
symmetric operator O = εabcdψaψbψcψd for three values of κ = −0.05, 0.0− 0.05 as G is varied.
A strong coupling expansion of the κ = 0 theory results in a prediction for the momentum space
fermion propagator of the form

F (p) =

√
6G2i sin pµ∑

µ sin2 pµ +m2
F

(2.1)

where a non-zero fermion mass m2
F = 24G2 − 8 is generated.

However, a fermion mass can also arise via a spontaneous breaking of one of the exact sym-
metries and the formation of a bilinear condensate. This appears to happen at κ = 0 where an
intermediate antiferromagnetically ordered phase appears around G ∼ 1.05 - see fig. 1b which
shows a staggered fermion susceptibility that scales linearly with volume as expected in the pres-
ence of a condensate. This susceptibility is defined by

χ =
1

V

∑
x,y

ε(x)ε(y)ψa(x)ψb(x)ψa(y)ψb(y). (2.2)
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To study this question more carefully we have added an SO(4) breaking source term to the action
and studied the condensate as a function of the magnitude of the source as the thermodynamic limit
is taken. The source terms take the form

δS =
∑
x,a,b

(m1 +m2ε(x))[ψa(x)ψb(x)]Σab
+ (2.3)

where the SO(4) symmetry breaking source Σab
+ is

Σab
+ =

(
iσ2 0

0 iσ2

)
. (2.4)
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The results for the vev of the antiferromagnetic bilinear (m1 = 0) as a function of source are
shown in fig. 2a at κ = 0 and G = 1.05 corresponding to the peak of the susceptibility. Clearly for
small values of the source the signal grows with increasing volume. This effect trades off against
the general result that the vev must vanish for zero source on a finite volume. As a result a plateau
develops that strengthens and moves to smaller source values as the thermodynamic limit is taken.
This provides unequivocal evidence for spontaneous symmetry breaking at this value of G and
confirms the presence of a condensate at this point in the phase diagram.

Contrast this with fig. 2b which shows the behavior of the same quantity at κ = 0.05 and
G = 1.05. In the latter plot the bilinear shows no significant volume dependence and falls smoothly
to zero as the source is reduced. Thus in this region of the phase diagram there is no evidence of
symmetry breaking. Of course one should worry that perhaps there is no phase transition at all or
that the transition is shifted away from G ∼ 1.05. Fig. 3 shows the corresponding susceptibility
which reveals a peak at that same value of the Yukawa coupling G. However, notice that this
peak is independent of the volume. While this is consistent with the absence of a condensate it
leaves open the possibility that only a crossover rather than a true phase transition survives for
κ > 0. One way to test this is to examine the number of conjugate gradient iterations required to
invert the fermion operator close to the transition. Fig. 4 shows a striking peak close to G ∼ 1.05

similar to that seen at κ = 0 and confirms the system still appears to undergo a phase transition
for (G, κ) = (1.05, 0.05). Indeed the peak is higher for positive κ indicating a faster growth of
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Figure 3: Susceptibility at κ = 0.05
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Figure 4: Number of CG iterations vs G for κ = 0 and κ = 0.05 at L = 8
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the correlation length as compared to the κ = 0 situation. Thus the numerical evidence favors a
continuous phase transition at small, positive κ and no intermediate, broken phase.

We have explored this model over a wider range of couplings and find results consistent with
the phase diagram sketched in fig. 5. For κ < 0 the antiferromagnetic (AFM) phase observed for
κ = 0 widens and still separates a massless symmetric phase (the so-called paramagnetic weak or
PMW phase) from a massive symmetric phase (the paramagnetic strong coupling or PMS phase).
If κ is sufficiently large and positive we see signs of a ferromagnetic (FM) phase, which for large
G is separated from the PMS phase by first order phase transitions. The most interesting region
is the one we focused on above, namely small positive κ and Yukawa couplings close to unity. In
this region there appears to be a continuous transition between the two symmetric phases. It is
important to recognize that some sort of phase transition must be present at this point since on one
side the fermion is massless while on the other it is gapped.

3. Summary

Our numerical results, which were obtained with a Rational Hybrid Monte Carlo algorithm,
appear to reveal the existence of a continuous phase transition separating a massless symmetric
(PMW) from a massive symmetric (PMS) phase in the plane of Yukawa and kinetic couplings. We
have concentrated the bulk of our efforts on the region near (G, κ) = (1.05, 0.05). In the original
four fermi model with κ = 0, this value of G = 1.05 lies close to the center of the antiferromag-
netic phase. The transition between massless and massive phases appears to be continuous around
(G, κ) = (1.05, 0.05) and there is no sign of a bilinear fermion condensate either antiferromagnetic
or ferromagnetic in nature at that point. If the evidence for this transition holds up on larger lattices
it suggests the existence of a new fixed point for strongly coupled fermions in four dimensions
and should allow for the possibility of giving fermions mass in the continuum without breaking
symmetries. This is already a very interesting possibility.

It also may offer some hope for formulating chiral fermions on the lattice following an old
idea by Eichten and Preskill in which strong four fermion interactions are used to gap out would
be doubler states that arise in a naive approach to formulating Weyl fermions on the lattice. The
basic idea is to modify the Yukawa terms by including additional derivative operators so that the
interactions become large for doubler states but remain small for the primary, naive Weyl fermions.
The spirit of the approach is rather similar to the inclusion of a Wilson term for vector like theories
in which lattice derivatives are inserted into a bare fermion mass term to generate large doubler
masses. For a chiral theory there are no invariant mass terms but there are invariant four fermion
or Yukawa couplings and provided these break any anomalous symmetries it is possible to imagine
a scenario where the doublers can be decoupled. It would be very interesting to repeat the work
described here for such a model based on reduced staggered fermions to see whether such a scenario
can in fact be realized.

Acknowledgments

SMC acknowledges the support of the DOE through the grant DE-SC0009998. DS was sup-
ported by UK Research and Innovation Future Leader Fellowship MR/S015418/1.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
0
4
4

Higgs-Yukawa Model Simon Catterall

1st order transition

PMW

PMW

PMS

PMS

0.950.950.95 1.151.151.15

AFM

FM

G

κ = 1
8

κ = 1
8κ = 1
8

κ = 0κ = 0κ = 0

κ = −1
8

κ = −1
8κ = −1
8

Figure 5: Sketch of the phase diagram in the (κ,G) plane
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