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In this paper, we report recent developments of the HAL QCD method for two hadron systems
which contain quark annihilation processes using all-to-all quark propagators. We employ the
hybrid method for all-to-all propagators, which combines a low-mode spectral decomposition of
the quark propagator and stochastic estimators for remaining high modes, to evaluate the HAL
QCD potentials for the first time. Using this method, we investigate the I = 1,2 ππ scatterings
at mπ ≈ 870 MeV. In the I = 2 study, we study how statistical fluctuations of the HAL QCD
potentials are increased due to stochastic estimators in the hybrid method, compared with the
conventional one without them. We find that we can reduce statistical fluctuations by dilutions
of stochastic noises in order to obtain sufficiently precise results, which turn out to be consistent
with conventional results without all-to-all propagators. In the I = 1 ππ case, which contains
quark annihilation processes, we find that statistical fluctuations are further enhanced due to noise
contaminations in annihilation processes. We, however, confirm that we can also reduce such
statistical fluctuations to obtain the potential with a reasonable precision as long as we further
increase a degree of dilutions at a price of large numerical costs and take an appropriate scheme
for the potential.
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1. Introduction

It has been observed that there are some unconventional hadronic resonances, such as X ,Y,Z
states and σ meson. Those states have been widely studied by using some models, but their prop-
erties are still not well-understood. Therefore, model-independent investigation of exotic states by
lattice QCD is strongly needed to understand them more accurately.

The HAL QCD method[1, 2, 3, 4] is a way to construct inter-hadron potentials from lattice
QCD with a strong advantage that it enables us to study pole structures of the S-matrix directly
without any model-dependent ansatz. Therefore, the analysis by using the HAL QCD method
is mandatory to understand the nature of hadronic resonances. To study hadronic resonances in
the HAL QCD method generally requires all-to-all propagators within reasonable numerical costs,
which has not been established yet for the potentials. Under such circumstances, we have been
testing the hybrid method[5], which evaluates all-to-all quark propagators by the spectral decom-
position for the low-mode part plus the stochastic estimation for the high-mode part. In this paper,
we will report two results, the I = 2 S-wave ππ scattering study[6], which is intended to study
how the statistical errors of the potential behaves with the hybrid method, and the I = 1 P-wave ππ
scattering study, which is a preparatory research for future ρ resonance studies. From these results,
we confirmed that the hybrid method works well in the HAL QCD method as far as we reduce
additional statistical fluctuations due to the stochastic estimation in the hybrid method.

2. HAL QCD method

The fundamental quantity in the HAL QCD method is the Nambu–Bethe–Salpeter (NBS) wave
function, which is defined as

ψW (r,∆t) = ⟨0|π(x+ r,∆t)π(x,0)|ππ;k⟩, (2.1)

where π(x, t) is the pion operator, and |ππ;k⟩ is the elastic state of the two-pion system with a
relative momentum k. We here introduce a relative time difference ∆t between two pion operators
at the sink, while ∆t = 0 has been exclusively used in the previous HAL QCD studies. In this
study we take local operators for positively(negatively)-charged pion, π+(x, t) = d̄(x, t)γ5u(x, t)
(π−(x, t) = ū(x, t)γ5d(x, t)).

We extract the potential from the normalized correlator R(r, t,∆t), which is a sum of NBS
wave functions as

R(r, t,∆t)≡ ⟨0|π(x+ r, t +∆t)π(x, t)Jππ(0)|0⟩
Cππ(t)2 ≈ ∑

n
AnψWn(r,∆t)e−(Wn−2mπ )t + ... , (2.2)

where Cππ is the pion two-point function, Jππ is a source operator which creates ππ states, Wn

is the energy of the nth elastic state and an ellipsis indicates inelastic contributions. By using an
asymptotic behavior of the NBS wave function[2], we can define a non-local potential as[4][

∇2

mπ
− ∂

∂ t
+

1
4mπ

∂ 2

∂ t2

]
R(r, t,∆t) =

∫
d3r′U(r,r′)R(r′, t,∆t). (2.3)

In practice, the non-locality of the potential is treated by the derivative expansion,

U(r,r′) = (V0(r)+V1(r)∇2 +O(∇4))δ (r− r′), (2.4)

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
0
5
8

Study of the ππ scatterings with all-to-all propagators and HAL QCD method Yutaro Akahoshi

whose leading-order (LO) term, for example, is given by

V LO(r) =

[
∇2

mπ
− ∂

∂ t +
1

4mπ
∂ 2

∂ t2

]
R(r, t,∆t)

R(r, t,∆t)
. (2.5)

3. The hybrid method for all-to-all propagators

In this study, we employ the hybrid method[5], which enables us to obtain all-to-all propaga-
tors while keeping the locality of the quark operators. The starting point is the low-mode spectral
decomposition of the quark propagator,

D−1
0 (x,y) =

Neig−1

∑
i=0

1
λi

v(i)(x)⊗ v(i)(y)†γ5, (3.1)

where λi,v(i) are the ith eigenvalues and eigenvectors of H = γ5D, respectively, and Neig is a number
of low-modes we take in the calculation. The remaining high-mode part is estimated stochastically
using the noise vector η(i)

[r] , together with the noise reduction by dilution technique[5] as

D−1 −D−1
0 = H−1P1γ5 ≈

1
Nr

Nr−1

∑
r=0

Ndil−1

∑
i=0

ψ(i)
[r] (x)⊗η(i)

[r] (y)
†γ5, (3.2)

where P1 ≡ 1−∑
Neig−1
i=0 v(i)⊗v†(i) is a projection to the high-eigenmode space, Nr (Ndil) is a number

of noise vectors (dilutions), and ψ(i)
[r] are solution to H ·ψ(i)

[r] = P1η(i)
[r] .

In summary, we can write the quark propagator in the hybrid method as

D−1 ≈ 1
Nr

Nr−1

∑
r=0

Nhl−1

∑
i=0

u(i)[r] ⊗w†(i)
[r] γ5, Nhl = Neig +Ndil, (3.3)

where u and w are defined as

w(i)
[r] = {v(0)

λ0
, · · · , v(Neig−1)

λNeig−1
,η(0)

[r] , · · · ,η
(Ndil−1)
[r] } (3.4)

u(i)[r] = {v(0), · · · ,v(Neig−1),ψ(0)
[r] , · · · ,ψ

(Ndil−1)
[r] }. (3.5)

4. I = 2 ππ S-wave scattering

We first study the I = 2 ππ S-wave scattering, using 2+1 flavor full QCD configurations on
163 ×32 lattice generated by the CP-PACS and JLQCD Collaborations[7] with the Iwasaki gauge
action[8] and a non-perturbatively O(a) improved Wilson-Clover action[9]. In this setup, the lattice
spacing is a ≈ 0.1214 fm and the pion mass is mπ ≈ 870 MeV. For the NBS wave function, we take
the equal–time scheme(∆t = 0). We employ the smeared quark source qs(x, t) = ∑y f (x−y)q(y, t),
together with the Coulomb gauge fixing, to achieve the ground state saturation at early imaginary
times, where f (x) = {ae−b|x|,1,0} for {0 < |x| < (L− 1)/2, |x| = 0, |x| ≥ (L− 1)/2} with a =

1.0,b = 0.47 in lattice units. For the hybrid method, we take Neig = 100 and nr = 1 for Z4 noises,
together with full dilutions for color and Dirac indices, the 16-interlace dilution for time and s4
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Figure 1: (Left) The LO potential by the hybrid method (blue) and by the conventional method with the
wall source (red). (Right) k cotδ0 obtained from the hybrid method (blue) and the conventional one with the
wall source (red), together with the result of Lüscher’s method(black).

dilution for space. (Thus Ndil = 3× 4× 16× 4. See Ref. [6] for more details.) Statistical errors
from Nconf = 60 are estimated by the jackknife method with bin–size 6. We use the wall source
result at t = 10 without all-to-all propagators for a comparison.

The LO potential from the hybrid method is compared with the one from the wall source
in Fig.1(left). Although the statistical fluctuations are somewhat enhanced due to the additional
stochastic noises in the hybrid method, both results agree with each other 1. Note that to achieve
such high precision with the hybrid method, it is very important to take fine dilutions in spatial
directions. The potential is fitted by the sum of two Gaussian functions,

V (r) =
N−1

∑
i=0

a2ie
−( r

a2i+1
)2

(4.1)

with N = 2. We solve Schrödinger equation with the fitted potential, to extract k cotδ0(k), which
are shown in Fig.1(Right), together with the result from the Lüscher’s method. As expected from
the agreement of the potentials, the phase shifts are consistent with each other, and also agree with
the result from the Lüscher’s method. We thus confirm that physical observables can be obtained
with sufficient accuracy in the HAL QCD method combined with all-to-all propagators from the
hybrid method.

We have also systematically studied how the statistical fluctuations of the potentials are af-
fected by the choice of the parameters of the hybrid method. For more details, see [6].

5. Test calculation for I = 1 ππ P-wave scattering

We next study the I = 1 ππ P-wave scattering, to see how statistical noises in the hybrid
method increase if the system contains quark annihilation processes, using the same gauge ensem-
ble, where the ρ meson appears, not as a resonance, but as an extremely deep bound state below
the two-pion threshold with Ebind ≈ 510 MeV. The setup of our calculations is summarized in Tab.1

1Generally, the LO potentials from different source operators are not identical due to the higher order terms in the
derivative expansion. The agreement suggests either that higher order terms have negligible contributions or that both
correlators are dominated by the ground state.
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Table 1: Details of setups of the results in I = 1 ππ study

Source Scheme time dilution space dilution Neig Nconf

case 0 point ∆t = 0 16-interlace s2 100 20

case 1 smear ∆t = 1
16-intelace (src-to-sink)
4-interlace (sink-to-sink)

s4 (src-to-sink)
s8× s2 (sink-to-sink)

100 60
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Figure 2: (Left) I = 1 ππ potential with the same setup in Ref. [6]. (Right) The potential with additional
noise reductions and its time dependence.

5.1 I = 1 ππ potential with the hybrid method

We first employ the setup of the case0 in Tab.1, same to the “case3” in Ref. [6], which gave
the sufficiently precise I = 2 ππ potential. The result of the I = 1 ππ potential is shown in Figure
2(left), where we observe extremely large statistical fluctuations. We suspect that extremely large
statistical fluctuations for the I = 1 ππ potential are caused by noise contaminations to evaluate
equal–time propagations at the sink in quark annihilation diagrams, which are absent for the I = 2
ππ potential in Ref. [6]. Thus, in order to reduce such noise contamination, we employ three addi-
tional noise reductions: (1) The different–time scheme for the NBS wave functions (we take ∆t = 1
in Lattice unit) to avoid the equal–time propagations, (2) The finer space dilution in the quark anni-
hilation part to reduce noise contamination in spatial indices (8 times finer than case0) and (3) The
average over different noise samples (we take the average over 6 noise samples). In Fig.2(right),
we show the potential obtained with these noise reductions. As we can see, the statistical fluctu-
ations of the potential are drastically reduced, and it shows a strong attraction without repulsive
core, which is consistent with the existence of the ρ bound state. Note that the potential is almost
time-independent, as seen in Fig.2(right), probably due to the ground state saturation achieved at
t = 6 thanks to the source smearing. From this result, we establish that the HAL QCD potential
can be calculated with sufficient precision by the hybrid method even if the target system contains
quark annihilation processes.

5.2 Binding energy of the ρ meson

We evaluate the physical observables, namely the binding energy of the ρ state, by using the
I = 1 ππ potential. For the fitting function, we use the multi-Gaussian shape (Eq. 4.1) with N = 3,
and we employ the Gaussian expansion method[10] to calculate the binding energy. The fitting
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Figure 3: Fitting result of the potential. In this figure, we show V (r) in Eq.5.1 as a red line. We also show
the fitting result with centrifugal term, Vc(r) =

l(l+1)
mπ r2 with l = 1(green line).

result is shown in Fig.3. Since the potential is slightly deviate from zero at r = La/2 = 0.9712 fm,
we include the finite volume effect from nearest-neighbors into the fitting function as

V (r)PBC =V (r)+ ∑
n∈{(0,0,±1),(0,±1,0),(±1,0,0)}

V (r+Ln). (5.1)

We also exclude some data points which is largely deviates from other data points at r = 0.1214,
0.2428 fm in the fit, since these points are probably caused by the higher partial wave contamination
(l = 3 in this case), which is sometimes observed in the previous HAL QCD studies.

As a result, we obtain the binding energy,

Ebind = 668±24stat

(
+69
-151

)
sys

MeV, (5.2)

where the systematic error is estimated by the time dependence of the binding energy. The central
value is somewhat larger than expectation from the single-hadron spectra, Ebind,single ≈ 510 MeV,
and it has large time dependence, though the potentials seem to be time-independent. The possible
origin of the large time dependence is the systematic uncertainty of the potential fitting at short
distances. As you can see in Fig. 2 (Right), data points in the short distance region are scattered
with small statistical errors, and also a number of data points in this region is small. In such a
situation, the fit in this region becomes unstable, and as a result, the binding energies strongly
depend on time since they are very sensitive to the structure at short distances. To overcome this
ambiguity, we have to go finer lattice spacing or to invent a new scheme of the potential which
reduce scatterings of data at short distances. We leave this problem for future studies.

6. Summary and outlook

We apply the hybrid method for all-to-all propagators to calculations of the HAL QCD poten-
tial for ππ systems. In the I = 2 case, we confirmed that we can obtain sufficiently accurate results
with the hybrid method. In the I = 1 case, while we observed that the quark annihilation pro-
cesses enhance statistical fluctuations due to noise contaminations, we can reduce them to obtain a
potential with reasonable precision even in such a case thanks to additional noise reductions.
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Finally, I would like to mention further improvements. Although we confirm the hybrid
method works well with the HAL QCD method, it is also revealed that the numerical cost for
the noise reductions is too large to employ simulations with larger lattice sizes. Therefore, to study
hadronic resonances in more physical setups (larger volume, lighter pion, and finer lattice spac-
ing, etc.), further improvement to our calculation scheme is mandatory. Fortunately, we find that
by combining some techniques such as the covariant approximation averaging[11], the one-end
trick and sequential propagators[12], we can achieve both small noise contamination and small
numerical cost. Results by using these new techniques will be reported in near future.
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