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1. Introduction

The rare decay B — K*)¢* ¢~ has received much attention as a clean probe of new physics
since the Standard Model contribution is suppressed due to flavor-changing neutral-current. Siz-
able difference from the Standard Model has been reported for the differential decay rate of B —
K™ ¢+ ¢~ by LHCD [m, ).

In order to confirm this tension, we have to control the uncertainty due to non-perturbative
contributions. The experimental analysis of the B — K*)¢/*¢~ decays focused on the region where
invariant mass squared of the finial lepton pair ¢ is not close to the charmonium resonances.
However, long-distance effects between the final state kaon and the virtual charmonium state could
be significant even outside such resonance regions.

So far, theoretical estimates have been attempted by using the perturbative calculation and ap-
plying the factorization approximation, although the intermediate state can be more complex. In
the factorization, we approximate the amplitude by a product of the B — K part and the charmo-
nium resonance part. In other words, we ignore the interaction between the B — K form factor
and the charmonium two-point function. The factorization approximation has been studied with
experimental results and models, but reliable prediction for the B — K decay remains to be difficult
[B, B, 8, B].

In this proceedings, we report the recent progress of the numerical lattice calculation to study
the factorization approximation for the B — K¢* ¢~ amplitude. We calculate the B — K/*{~ decay
amplitude with and without the factorization. We take account of the renormalization constant and
provide a test of the factorization approximation using an explicit lattice calculation.

2. B— K¢*¢~ amplitude and the artificial divergence

In this section, we review the calculation of the decay amplitude with special emphasis on
the artificial divergence. Avoiding such divergence is essential for the lattice calculation, and the
problem is extensively studied for the calculation of K — /"¢~ amplitude on the lattice [Q, B].

We consider the B — K amplitude with the charmonium contribution, which occurs through
the weak effective Hamiltonian Heg with the Fermi constant G, CKM matrix V,, V., and Wilson

coefficient C;,
Gr

%

Hett = —=V. Ve (C,01 + C205) . 2.1

The operators Of, which include cc are

01 = (5iYuP-c;)(¢;YuP-bi),
05 = (SivuP-ci)(CjyuP-bj). (2.2)

where indeces i and j represent the color index, and the chiral projection operator is defined as

_1-%
P =5k

We define the B — K¢ ¢~ decay amplitude for a four-momentum g = k — p as

A = [ dt e (K(p)IT [ (0)Her (0] [BK). @3
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Figure 1: Setup of the lattice calculation of the B — K¢ ¢~ amplitude through charmonium J/  resonances.

In order to calculate the amplitude, we integrate over the position of the weak effective Hamil-
tonian and define I,; as

I, = e 1Ex(P)~Es®)u / " / &x / By e 5 (K (1, p)|T [J(t7,%) Hege (111, )] |B(0, k).
v 2.4)
The setup of the lattice calculation is shown in Figure M. We introduce ty,t;,tx,T,, and T} to
identify the time for each states and operators.
We can rewrite this quantity using the complete set of the intermediate states, which can be de-
scribed by the spectral densities p; (E) for the states with strangeness, and p,(E) for those without
strangeness. Namely,

o k k)|H. k _
= - [ agPAE KD OB ER A OIB) (-
i [ apblE) KA OIE ) EDMLOIBE) (- is-iom). s

In this representation, the 7}, ;, — oo limit of /;; can be identified as the amplitude,

A(g®) = —i_lim Iy(T,, Ty, k,p). (2.6)

Top—ree

In order that the integral (Z3) stays finite, the energy of the intermediate state plays an essential
role. Since E — Ex(p) > 0 is always satisfied, e~ (E=Ex(P)Ts can be ignored in the T}, — oo limit. On
the other hand, Eg(k) — E < 0 is not always satisfied, depending on the intermediate energy and

(Es(k)~E)Ta may diverge in the limit of large 7. At the physical point of the quark masses,

the term e
this artificial divergence can be hardly removed, since the number of such intermediate states is
large. In this study, we set the b-quark mass smaller than that of the physical value in order to avoid
this problem. Since the energy of the intermediate state E is bounded by the ground state energy
of the K and J/y meson, we choose the b-quark mass to realize the condition, Ep < Ey, + Eg.
With this unphysical b-quark mass, we can define the decay amplitude from the four-point
correlators. In this work, however, we test the factorization approximation as the first step before

proceeding to the extraction of the decay amplitude.
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Figure 2: Factorization of the four-point correlator B — K¢ ¢~ with charmonium J/y resonances.

Figure 3: A typical example of the non-factorizable contribution for B — K¢ ¢~ with the charmonium.
Gluon exchanging between B (K) and the charmoinum can not be factorized.

3. Factorization and renormalization

In order to investigate the factorization, we define operators O(1) and O®) as

o = (CituP-ci)(SjmP-bj),
0®) = @[Ty YuP-c;) k[Tl yuP-br). G.D

The operator with the color octet contraction O®) includes the SU(3) generators T,
Figure D illustrates the factorization of the B — K¢+ ¢~ four-point correlator. The contribution
of O is simply represented in the factorization approximation as,

(KJ/w|OW|B) ~ (K[s:y,P_bi|B)(J/ w|cyc|0). (3.2)

Figure B is a typical example of the non-factorizable contribution. As we can see in the defini-
tion of O®), the simple factorization is not allowed for this operator, because the factorized piece is
color-octet, which vanishes when sandwiched by the physical states. Namely, factorization of the
0®) is represented as

(KJ/y|0®|B) ~ 0. (3.3)

Since our lattice calculation is done in the O] and Of basis, we need to transform them to
the O() and O® basis. The Firtz transformation G YuP-9243YuP-q4 = G, YuP-q4q5YuP-q> can be
used to obtain the relation between Of, 05 and 0(1), 0®):

05 = oW,
05 = %0(1>+20<8). (3.4)
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B a! L3xT(xLs) meas. | am,g,  am, amy,
4.35 3.61009) 483><96(><8) 400 | 0.025 0.27287 0.66619

Table 1: The parameters for our lattice calculation.

Here, we also consider the renormalization of the operator Of and O5. The renormalized
operators (Of)g and (O$)g are written in terms of Of and O§ with the renormalization constants
Z11 and Zy2,

i
(03)r = Z12(01) +Z11(05). (3.5)

The renormalization constant are determined through temporal moments of three-point correlators
[a].

In order to test the factorization relation, we define the ratios Ry and R;;3 on the lattice of
volume V,

V(K|JyOS|B)r
(O1JyJu|0) R (K|S ;v P-b;|B) R’
(K|JyO5|B) R

Ripy=-—7T7"5"7 .
2 = (K19, 0 B oo

R]E

which become 1 or % when the factorization approximation is valid, respectively.

4. Preliminaly results

Our lattice setup is summarized in Table B. The lattice configurations are generated with Ny =
2+ 1 flavors of quarks, which are formulated by the Mobius domain-wall fermion [[d]. The lattice
spacing is a~' = 3.610(9) GeV, and each quark mass is set to am,4; = 0.025, am, = 0.27287, and
amy, = 0.66619. This choice yields the meson masses m; = 714(1) MeV and amp = 3.44(1) GeV.
We insert two-different momenta p,oy = (—2£,0,0) and py19 = (— 2%, —2Z,0) for the final state of
charmonium c¢. For the initial B meson state, we input a momentum k = (0,0,0). The momenta
P1oo and py1o are smaller than the physical one, but we focus on these two inputs as a first step. The
energy spectrum with these input values are calculated as Ex(pioo) = 855(3) MeV, Ex(pi110) =
969(9) MeV, E;/y(p1oo) = 3.127(1) GeV, and E;y,(p110) = 3.158(1) GeV. As we discussed in
the definition of the B — K decay amplitude, the spectrum satisfies the condition mg < E; )y, + Ek.
Namely, our setup does not suffer from artificial divergence, as we mentioned previously. The
source operators are set at rx = 42 for K meson source, f; = 27 for electromagnetic coupling
Ju. The B-meson source is set at the # = 0. In this study, statistical uncertainty is estimated
with 100 independent configurations with four different source points per configuration. Since the
propagating mesons are heavy, the auto-correlation is not significant.

We use the renormalization constants determined through the moments of the corresponding

three-point correlators [B]. They are Z;; = 0.669(11) and Z;, = 0.093(4).
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Figure 4: The ratio R /3 are shown for each input momenta. The electromagnetic current is set at #; = 27 as

shown by the dashed line.
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Figure 5: The ratio R; are shown for each input momenta. The electromagnetic current is set at £; = 27 as
shown by the dashed line.

Figure B shows the result for the ratio R; /3, which should be equal to 1/3 if the factorization
is a good approximation. The result is almost consistent with 1/3, and we do not see any signif-
icant violation of the approximation. On the other hand, the relation Ry ~ 1 is not satisfied, as
shown in Figure B. The size of the violation is as large as 30%. It suggests that the factorization
approximation may underestimate the ¢c contribution to B — K/ /™.

5. Discussions

A quantitative estimate of the ¢z contribution to B — K*)¢* ¢~ remains a notoriously difficult
task, because of the non-perturbative dynamics of QCD. The first principle calculation of the lattice
QCD can not be directly applied since there are many intermediate states that contribute to the real
and imaginary parts of the amplitude. In this work, we simplify the problem by considering an
unphysical setup with a smaller b quark mass, hoping that it captures the important part of the
dynamics. We find a significant violation of the factorization ansatz, which may be used as inputs
for phenomenological models to study more realistic situations. We also note that a large violation
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of factorization was previously found for the K — w7z amplitude [[D], which suggests the need for
fully non-perturbative calculation for similar processes.
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