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0. Introduction, motivation and background

In recent years there has been increasing interest in the possibility of searching for a stochas-
tic background of gravitational waves produced by a first-order phase transition in the early uni-
verse. This involves future space-based gravitational-wave observatories as discussed by Refs. [1,
2, 3] and references therein. Here we report initial investigations into the extent to which these
gravitational-wave searches may constrain or discover the stealth dark matter (DM) model intro-
duced and investigated through non-perturbative lattice calculations in Refs. [4, 5].

Stealth DM involves a composite bosonic ‘dark baryon’ DM candidate (analogous to the neu-
tron) that arises from an SU(4) gauge theory coupled to four flavors of moderately heavy fermions
in the fundamental representation (i.e., with masses roughly comparable to the confinement scale).
In order to generate the correct cosmological abundance of DM, these fermions transform in non-
trivial (vector-like) representations of the electroweak group, in such a way that the lightest (spin-0)
dark baryon is a singlet under the entire standard model (SM) gauge group. This DM candi-
date is automatically stable on cosmological time scales due to the conservation of dark baryon
number, in parallel to proton stability in the SM. Its mass arises from confinement and from the
technically natural masses of its ‘dark fermion’ constituents, with natural mass scales of order
1 .MDM . 100 TeV.

Even though those ‘dark fermions’ are electrically charged and couple to the Higgs boson,
the symmetries of the stealth DM model dramatically suppress direct detection cross sections.
Direct detection searches only mildly constrain the dark baryon’s effective Higgs interaction [4,
6], while the leading (dimension-5) magnetic moment and (dimension-6) charge radius effective
operators governing photon exchange are both forbidden. The cross section due to the dimension-7
electromagnetic polarizability interaction then provides an unavoidable lower bound on the entire
class of DM models involving dark baryons with charged constituents (reviewed in Ref. [7]). The
resulting direct detection constraint MDM & 0.2 TeV [5] is comparable to the collider constraint
MDM & 0.3 TeV [4, 8] set by searches for charged ‘dark pions’. These bounds are roughly two
orders of magnitude weaker than those for direct detection of an SU(3) model with unsuppressed
magnetic moment and charge radius interactions [9].

The connection to gravitational waves comes from the possibility that the confinement tran-
sition in the SU(4) sector could be first order. For SU(N ) gauge theories with N ≥ 3 and a
small number of fundamental fermions, such first-order transitions occur in two regimes: where
the fermions are all sufficiently heavy or all sufficiently light. This is illustrated in the ‘Columbia
plot’ sketched in Fig. 1. In the context of stealth DM we are interested in the region of heavier
fermion masses, connected to the pure-gauge theory recovered in the ‘quenched’ limit where the
fermions become infinitely massive. (In the chiral limit the baryon-to-pion mass ratio diverges,
allowing collider searches to rule out the entire parameter space.)

Our investigations proceed in two stages. First we need to determine roughly how heavy the
dark fermions must be in order for the stealth DM confinement transition to be first order and
produce a stochastic background of gravitational waves. If the dark fermion mass must be much
larger than the confinement scale, then dark glueballs may be stable and contribute to the relic
density, requiring reconsideration of the phenomenology and constraints reported by Refs. [4, 5].

The second stage, after locating a first-order transition, is to study it in more detail in order to
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Figure 1: A sketch of the ‘Columbia plot’ for
SU(N ) gauge theories coupled to two pairs of
fundamental fermions, showing the two regimes
where the confinement transition is first order for
N ≥ 3: when all four fermions are sufficiently
heavy or sufficiently light.

predict the spectrum of gravitational waves it would produce. The key parameters that need to be
computed or estimated for this purpose are the latent heat (or vacuum energy fraction), the phase
transition duration, and the bubble wall velocity [1, 2, 3]. Only the first of these is straightforward
to determine through lattice calculations.

Completing this work is necessary to translate future searches for stochastic gravitational
waves (resulting in either detections or exclusions) into novel constraints on stealth DM and related
models. For example, the gravitational-wave spectrum also depends on the transition temperature
T∗ (which may differ from the equilibrium critical temperature Tc used to set the scale of our lattice
calculations, due to possible supercooling). If we can assume T∗ ' Tc or estimate how they dif-
fer, observations of gravitational waves will indicate both the approximate mass scale of the dark
baryons as well as the minimum mass of the dark pions being searched for at colliders.

This proceedings focuses on the first step described above, investigating the nature of the
SU(4) confinement transition as we vary the mass of the four dynamical fermions. We first consider
the limiting case of SU(4) pure-gauge theory in the next section, confirming that we can observe
its known first-order thermal transition. In Section 2 we then couple the theory to four degenerate
fundamental fermions, and observe a clear change in the qualitative features of the transition upon
decreasing the fermion mass a ·m. We conclude in Section 3 by discussing the remaining work
needed to predict the gravitational-wave spectrum of stealth DM.

1. Tests in the pure-gauge limit
There have been many lattice investigations of the confinement transition of SU(N ) Yang–

Mills theory over the years. See Refs. [10, 11] for work with a focus on N = 4 and Ref. [12] for a
broader review. Our main goals in revisiting this calculation are first to confirm that our code and
algorithms are working correctly, and then to estimate appropriate lattice volumes L3×Nt to use
for the more expensive calculations with dynamical fermions. For both pure-gauge and dynamical
configuration generation with the HMC algorithm we use QHMC/FUEL [13], which is built on the
USQCD SciDAC software stack and provides efficient performance for arbitrary SU(N ).

Even though each individual lattice ensemble generated for this project is modest in size and
computational expense, many ensembles are needed, so it is worthwhile to consider the smallest
viable L andNt. For each fermion mass and the a·m→∞ pure-gauge limit, we want at least three
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Figure 2: Left: Pure-gauge SU(4) plaquette (�) and Wilson-flowed Polyakov loop (|PLW |) susceptibilities
χ plotted vs. the fundamental gauge coupling βF (with adjoint coupling βA = −βF /4). We superimpose
results for lattice volumes 163× 4 (solid), 243× 6 (dotted) and 323× 8 (dashed lines) with aspect ratio
α ≡ L/Nt = 4. For clarity we normalize each data set by its maximum peak height, and draw only lines
connecting the omitted data points. The bulk transition signalled by χ� is clearly separated from the thermal
transition signalled by χPLW

only forNt ≥ 6. Right: A double-peaked structure in the histogram of |PLW |
measurements on 243×8 lattices with βF = 15.0 confirms that the confinement transition is first order.

Nt in order to enable continuum extrapolations, in each case with at least three aspect ratios L/Nt

in order to enable infinite-volume extrapolations. Fixing {a·m,Nt, L/Nt}, we scan both from high
to low temperatures and from low to high temperatures, to check for possible hysteresis. In total,
with four finite a·m = {0.05, 0.1, 0.2, 0.4}, four Nt = {4, 6, 8, 12} and five L/Nt = {2, 3, 4, 6, 8}
we have generated 1,310 ensembles each with 5k–50k molecular dynamics time units (MDTU).
We monitor the autocorrelation times τ for (non-topological) observables of interest, finding that
the longest of these can reach τ ≈ 2k MDTU in the vicinity of the transition. We accumulate
enough data to ensure at least 14 statistically independent measurements after thermalization.

It is well known that severe discretization artifacts are likely to be present for small Nt ≤ 4,
related to the thermal confinement transition merging with a bulk transition into a lattice phase [14,
15]. Following Ref. [16] we have attempted to avoid this bulk transition by using a gauge ac-
tion that includes both fundamental and adjoint plaquette terms, with negative adjoint coupling
βA = −βF /4. This differs from the βA = 0 case considered in Refs. [10, 11], requiring continuum
extrapolations in order to carry out quantitative comparisons with that past work. From the left
panel of Fig. 2 we conclude that it is still unsafe to rely on Nt = 4 results in continuum extrapola-
tions, since Nt ≥ 6 is needed to clearly separate the Nt-dependent thermal confinement transition
(signalled by the Wilson-flowed Polyakov loop susceptibility χPLW

) from theNt-independent bulk
transition (signalled by the plaquette susceptibility χ�). See Ref. [17] for background on our use
of the Wilson flow to improve signals for the Polyakov loop and its susceptibility; we carry out
measurements with

√
8t/Nt = 0.5, corresponding to flow time t = 2 for Nt = 8.

In the right plot of Fig. 2 we confirm that the confinement transition we see is first order, by
measuring a double-peaked histogram for |PLW | on 243×8 lattices with βF = 15. The lattice
volumes we have generated do not show any hysteresis, and the statistics we have accumulated
do not produce clear volume dependence either in the height of the Polyakov loop susceptibility
peak or in the Polyakov loop kurtosis [18]. The presence of two peaks in the |PLW | histogram is
therefore the main evidence we use to distinguish between first-order transitions and crossovers.
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Figure 3: Left: The mass dependence of the confinement transition signalled by PLW on 323×8 lattices.
Right: A double-peaked structure like that shown for the pure-gauge theory in Fig. 2 persists for dynamical
fermions with mass a·m = 0.4 in the histogram of |PLW |measurements on 163×8 lattices with βF = 14.18.

2. Four-flavor mass dependence with Nt = 8

Having completed the exercise of mapping out the finite-temperature phase diagram for SU(4)
Yang–Mills theory, we now repeat this work including dynamical fermions with a range of bare
masses a·m. Although stealth DM requires at least a small splitting between two pairs of degenerate
fermions (to guarantee that charged ‘dark mesons’ decay before Big Bang nucleosynthesis [4]), for
simplicity we carry out these finite-temperature studies with four degenerate flavors, corresponding
to the “Nf = 4” diagonal line in Fig. 1. This allows us to use unrooted staggered fermions, and we
continue to follow Ref. [16] by working with an improved lattice action featuring nHYP smearing
with parameters (0.5, 0.5, 0.4). Since continuum extrapolations remain work in progress, in this
proceedings we focus on the largest Nt = 8 for which a large amount of data is available.

We parameterize the fermion masses by computing the corresponding ratio of dark pion and
dark vector meson masses, MP /MV , which involves additional calculations of the meson spec-
trum on zero-temperature 243×48 lattices at the critical β(c)F for the given a ·m. This simpli-
fies comparisons with previous quenched lattice studies of stealth DM [4, 5], which used va-
lence Wilson fermions with masses corresponding to 0.55 . MP /MV . 0.77. The four stag-
gered masses a ·m = {0.05, 0.1, 0.2, 0.4} we have considered so far correspond to MP /MV =

{0.65(3), 0.80(3), 0.91(1), 0.96(1)}, respectively, with uncertainties set by varying ∆βF = ±0.2

around β(c)F . We chose the smallest a·m = 0.05 in order to overlap the mass range considered in
Refs. [4, 5], while the larger masses are needed to obtain a clearly first-order transition.

The left plot of Fig. 3 shows the real part of the Wilson-flowed Polyakov loop PLW vs.
βF to illustrate how the dynamical fermions shift the confinement transition to stronger critical
β
(c)
F ≈ {12.7, 13.1, 13.6, 14.2} as a·m decreases. Even though the heaviest fermion mass a·m =

0.4 produces a rather large mass ratio MP /MV ≈ 0.96, the corresponding β(c)F ≈ 14.2 is still
significantly different than the pure-gauge β(c)F ≈ 15.0 for our fundamental–adjoint lattice action.
Even at this heaviest mass, the dynamical fermions have significant effects. So far it is only for
this a·m = 0.4 that we observe two-peak |PLW | histograms like the one shown in the right plot
of Fig. 3, which establish that this mass is sufficiently heavy to remain in the upper-right region of
Fig. 1 where the transition is first order and can produce gravitational waves.

As mentioned at the end of the previous section, the statistics that we are able to accumulate
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Figure 4: The Wilson-flowed Polyakov loop deconfinement fraction defined in the text, showing the same
behavior for the pure-gauge theory (left) and dynamical fermions with a·m = 0.4 (center), in contrast to the
qualitatively different volume dependence seen for a·m = 0.2 (right) and lighter masses.

have not yet allowed us to clearly distinguish between first-order transitions and crossovers using
the most traditional observables such as the volume dependence in the height of the Polyakov loop
susceptibility peak or in the Polyakov loop kurtosis. A different observable that currently appears
more promising is the ‘deconfinement fraction’ discussed in Refs. [10, 19], which measures the
proportion of arg(PLW ) measurements that fall within a certain (tunable) angle θ around any of
the Z4 symmetry axes. Although this quantity was originally developed in the context of pure-
gauge theories, it remains well-defined in the presence of fundamental fermions that favor the
positive real axis. With Nin of Ntot measurements suitably aligned along the Z4 axes, defining
f ≡ π/4

π/4−θ

[
Nin
Ntot
− θ

π/4

]
shifts and normalizes the deconfinement fraction so that f → 1 in the

deconfined phase and f → 0 in the confined phase. This is shown in Fig. 4, where the key feature is
the contrast between the results for a·m = 0.4 (which behave the same as the first-order transition
of the pure-gauge theory) and those for a·m = 0.2, which show qualitatively different dependence
on the spatial lattice volume. This volume dependence becomes even more pronounced as a ·m
decreases further, consistent with the transition changing to a crossover between 0.2 < a·m < 0.4.

3. Conclusions and next steps

Stealth dark matter features an early-universe confinement transition that—if it is first order—
can produce a stochastic background of gravitational waves that will be searched for using future
space-based observatories. To investigate this possibility, the Lattice Strong Dynamics Collabora-
tion is analyzing the finite-temperature dynamics of stealth DM, first determining the range of dark
fermion masses for which the transition is first order and then studying this first-order transition in
more detail to predict the characteristics of the gravitational waves it would produce. This proceed-
ings focused on the first step, finding that a crossover persists up to large masses corresponding to
MP /MV ' 0.9, with evidence for a first-order transition when MP /MV ≈ 0.96.

Work on the second step is underway, focused on determining the latent heat of the transition,
and its extrapolation to the infinite-volume continuum limit. While it will be more challenging
to establish robust non-perturbative constraints on the phase transition duration and bubble wall
velocity for the first-order stealth DM transition, these lattice calculations should be able to pro-
vide new insight into those quantities. It will also be worthwhile to explore alternative means of
analyzing such first-order phase transitions, such as the density of states approach [20].
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