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Bottomonium spectral functions in thermal QCD Sam Offler

1. Introduction

Quarkonia, bound states of a heavy quark and anti-quark, are among the most-studied probes
of the quark-gluon plasma, both experimentally and theoretically, see e.g. the reviews [1, 2]. In
this contribution, we report on the latest preliminary results of the FASTSUM collaboration [3]
for bottomonium, using lattice NRQCD on our new Generation 2L thermal ensembles. These
calculations, with N f = 2+1 flavours of Wilson-clover quark, are performed on anisotropic lattices,
with ξ = as/aτ = 3.453(6) and a fixed cutoff of a−1

τ = 5.997(34) GeV, a pion mass of mπ = 236(2)
MeV, and a physical strange quark. Some details on the ensembles are given in Table 1 and a full
discussion of Gen 2L is given in a companion contribution [5]. In particular, an estimate of the
pseudocritical temperature from the renormalised chiral condensate is given by Tpc = 162(1) MeV,
which we will use as an indication for the crossover temperature.

The current study extends our previous Generation 1 [6–9] and especially Generation 2 [10]
analysis, which differs from the Gen 2L ensembles by having a heavier pion, mπ = 384(4) MeV.
Hence one of the objectives of this study is to investigate the role of the light quarks. A second
objective is to explore new methods for extracting spectral information from Euclidean correlators
and we will present some very preliminary results obtained using a machine learning approach,
namely Kernel Ridge Regression.

2. NRQCD correlation functions

We follow the approach discussed in detail in Refs. [7, 10]. Bottomonium correlators are gen-
erated by solving the NRQCD evolution equations for the b quark, whose mass is tuned via the
non-relativistic dispersion relation of the spin-averaged 1S groundstate. Hadronic spectral quanti-
ties are determined up to an overall energy constant E0, which is fixed via the experimental value
of the ϒ(1S) mass. We find that E0 = 7464.5 MeV. Some results in the ϒ (S wave) and χb1 (P
wave) channels are shown here. In Fig. 1 we present the ratio of Euclidean correlators at a given
temperature T to the correlator at T0 = 47 MeV, the lowest temperature on which the bottomo-
nium correlators were computed, allowing for a first indication of thermal effects. Fig. 2 contains
temperature-dependent effective masses. In agreement with earlier observations [7–11], we note
significant temperature dependence in P waves, not present in S waves. In fact, there is quantitative
agreement with the Gen 2 results [10], indicating only a weak pion mass dependence.

Nτ 256∗ 128 64 56 48 40 36
T [MeV] 23 47 94 107 125 150 167

Ncfg 750 306 1041 1042 1123 1102 1119
Nτ 32 28 24 20 16 12 8

T [MeV] 187 214 250 300 375 500 750
Ncfg 1090 1031 1016 1030 1102 1267 1048

Table 1: Generation 2L ensembles, mπ = 236(2) MeV, lattice size 323×Nτ , spatial lattice spacing as =

0.1136(6) fm, temporal lattice spacing a−1
τ = 5.997(34) GeV, anisotropy as/aτ = 3.453(6). The choice of

parameters and the ensemble at the lowest temperature are courtesy of the HadSpec collaboration [4].
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Figure 1: Thermal modification, G(τ;T )/G(τ;T0) with T0 = 47 MeV, of the correlation functions in the ϒ

(left) and χb1 (right) channels. Note the different vertical scale.
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Figure 2: Effective mass in the ϒ (left) and χb1 (right) channels, for a range of temperatures. The resulting
masses at the lowest temperature are m(1S) = 9.460 GeV and m(1P) = 10.005 GeV respectively. The latter
is somewhat on the heavy side, which requires further investigation.

3. Kernel Ridge Regression

In order to gain a more detailed understanding of spectral modification in a thermal medium,
it is of interest to extract the spectral function ρ(ω), related to the Euclidean correlator G(τ) via1

G(τ) =
∫

ωmax

ωmin

dω

2π
K(τ,ω)ρ(ω), K(τ,ω) = e−ωτ . (3.1)

As is well known, determining ρ(ω) from a numerically computed correlator G(τ) at a finite
number of temporal lattice points is an ill-posed inversion problem. This has been addressed using
the Maximum Entropy Method (MEM) and other approaches (see Ref. [2] and references therein),
but these methods are not yet entirely satisfactory as they suffer from systematic uncertainties.

1The form of the kernel K(τ,ω) depends on the problem; for NRQCD it is the simple exponential given here [6,7].
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In the last decade the field of machine learning has undergone significant development, with
considerable success in image classification and reconstruction, given incomplete and noisy input
data. Hence it makes sense to investigate whether machine learning methods can be applied to
spectral reconstruction in the context of lattice QCD. If successful, this alternative approach can
then be used to support the results of other methods such as MEM, with the potential to surpass it in
the future. While there are many methods available, here we will focus on Kernel Ridge Regression
(KRR), which has been used in Ref. [12] to address the analytic continuation problem in quantum
many-body physics, using mock data only. An alternative Deep Neural Network approach has been
tested on mock data in Ref. [13]. In this contribution, we will apply KRR to actual lattice data.

Kernel Ridge Regression, like linear regression, is used to determine a mapping between two
datasets. However, KRR uses sets of functions as opposed to sets of values as in linear regression.
In our context the KRR model is used to map a set of correlators to a set of spectral functions, i.e.
to establish the relation (G,ρ). The method for training a KRR model can be separated into three
steps: generation of training data, determination of a parameter matrix α which relates the input and
output data, and lastly selecting the optimal KRR hyperparameters. The final step is optional, but
is done to improve predictions. We note here that the generation of training data is straightforward:
one can construct an essentially unlimited set of spectral functions by combining multiple (narrow
and broad) peaks and a continuum contribution at large energies, while imposing an upper limit
ω < ωmax arising from the finite lattice cutoff [7]. In practice we generated the training set by
combining Gaussians of various widths, while enforcing the constraints ρ(ω = ωmin) = 0, ρ(ω)>

0, and ∫
ωmax

ωmin

dω

2π
ρ(ω) = G(τ = 0) =

∫
d3x S(x), (3.2)

where S(x) is the source used in the NRQCD formulation, see Ref. [7] for details. Given these
spectral functions, the associated Euclidean correlators follow from the easy-to-evaluate integral
(3.1), which is performed either by integration or by summation, after discretising the ω interval
using Nω points.

One issue with spectral reconstruction, i.e. the inversion of Eq. (3.1), is the mismatch in the
number of points Nω needed to describe the spectral function ρ(ω), say O(1000), and the num-
ber of points available from the correlator G(τ), which is O(Nτ). This can partly be avoided by
expressing ρ(ω) in terms of an incomplete set of basis functions, for instance by employing the
decomposition familiar from MEM [14],

ρ(ω) = m(ω)exp
Na

∑
k=1

ak fk(ω). (3.3)

Here m(ω) is a polynomial in ω , ak (k = 1, . . .Na) are a set of coefficients, and fk(ω) form the set
of basis functions, satisfying ∫

ωmax

ωmin

dω fk(ω) fl(ω) = δkl. (3.4)

For the results shown here, we use a constant m(ω) = m0. The choice of basis functions is inspired
by the construction used in MEM [14]. For this we consider the kernel K(τk,ωn), after discretis-
ing both τ and ω , as an Na×Nω matrix, and generate the basis functions by taking the SVD of
K(τk,ωn). The crucial difference with MEM is that Na does not depend on the number of time
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slices available at a given temperature, Nτ , but is a free parameter chosen such that Nτ �Na�Nω .
Changing Na allows for checks of stability. Given a spectral function in the training set and a
constant m(ω) = m0, the coefficients ak are then determined by

ak =
∫

ωmax

ωmin

dω fk(ω) log
[

ρ(ω)

m0

]
. (3.5)

KRR will now establish the map between G(τ) and the set {ak}.
To train the model, we note that KRR is a combination of two techniques. The first of these,

the kernel method, can be treated as a generalised form of linear regression. In the linear case
y = wT φ(x), where y are the target data, φ(x) is a vector of functions of the input data x, and w
is a vector of parameters [15]. The cost function to be minimized is E = 1

2(y−wT φ(x))2. In our
application, the input data are a training set of Euclidean correlators Gi(τ) (i = 1, . . . ,Ntrain). Rather
than using these directly, they are combined in a Ntrain×Ntrain matrix C, with

Ci j = exp
(
− 1

σ2 ∑
n
[Gi(τn)−G j(τn)]

2
)
, (3.6)

where the sum goes over all time slices.2 The quantity σ is a hyperparameter, which sets a correla-
tion length in the space of correlators. The target data, i.e. the spectral functions, are encoded in a
Ntrain×Na matrix Y, in which each row contains the Na coefficients determining ρi(ω) according
to Eq. (3.3). Finally, the input and target data are assumed to be related according to

Y = Cα, (3.7)

which defines the Ntrain×Na matrix α as the equivalent of w in linear regression. The aim of the
training stage is to determine this α .

The second ingredient in KRR is ridge regression, which adds an additional term in the cost
function, proportional to the square of the parameters, to prevent overfitting. This gives the follow-
ing cost function

E(Y,C,α) =
1
2
(Y−Cα)2 +

1
2

λα
T Cα, (3.8)

where λ is the second hyperparameter, used to regularise the influence of the additional term.
Minimising this cost function with respect to α then determines the optimal parameter matrix, for
given σ and λ , as

αopt = (C+λ I)−1 Y. (3.9)

The hyperparameters are determined via a cross-validation procedure. After this training stage, it is
possible to make predictions for a spectral function (Y′) given an actual Euclidean correlator using

Y′ = C′αopt, (3.10)

where C′ is determined from the squared difference between the NRQCD correlator and the training
correlators, i.e. it is a matrix of size 1×Ntrain.

2The actual form of the kernel function can be varied with the only restriction being that it determines a difference
between the input data [15]. It should not be confused with the integral kernel appearing in Eq. (3.1).
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Figure 3: Spectral functions, obtained with the Maximum Entropy Method (MEM, left) and Kernel Ridge
Regression (KRR, right) using Na = 80 basis functions, in the ϒ channel for a number of temperatures, in
Gen 2L. The dotted line indicates the mass at the lowest temperature, obtained used a conventional fit.

First preliminary results of this approach are presented in Fig. 3, in the ϒ channel, comparing
MEM (left) and KRR (right). The latter are obtained using Na = 80 coefficients to parametrise the
spectral functions, at all temperatures. The size of the training set is Ntrain = 9000. Training is
repeated at every temperature, using the same training set {ρi(ω)}, but for correlators appropriate
at that temperature, i.e. with given Nτ . We note a clear first peak, whose position coincides with
the mass obtained using a standard exponential fit at the lowest temperature, indicated with the
dotted line. As the temperature increases, the size of the first peak drops above T = 187 MeV,
in both MEM and KRR. Given the difference between the two approaches, this is an interesting
observation. The area under the spectral function is the same at all temperature, see Eq. (3.2);
hence a reduction of the size of the first peak leads to more spectral weight at higher energies, both
in MEM and KRR. In the case of KRR this leads to a more pronounced second peak. However, the
second peak is at this moment not yet reliable and requires further study.

4. Summary

We have shown new results for bottomonium on the FASTSUM Gen 2L ensembles, finding
quantitative agreement with previous Gen 2 results. Further analysis will be carried out shortly,
including the application of the methods developed in Ref. [16]. We have presented preliminary
results for spectral reconstruction using a machine learning technique, namely Kernel Ridge Re-
gression, applied to actual lattice QCD data for the first time. The position of the first peak was
seen to coincide with the one obtained from conventional fitting and from MEM, with a drop of the
peak size at higher temperature seen both with KRR and MEM. Even though much remains to be
done, we take these first results as a positive stimulus for the future.
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