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Matrix elements of bound states in a finite volume
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Recently, a framework was developed for studying form factors of two-body states probed with
an external current. Finite volume matrix elements that may be computed via lattice QCD are
converted to infinite volume generalized form factors. These generalized form factors allow us to
study the structure of composite states. In this talk, we consider the application of this formal-
ism to bound states, and compare the leading finite volume effects to the general results of the
framework. Specifically, we consider the implications for the deuteron at the physical point, and
conclude that it’s necessary to use the full formalism to not be saturated by systematics.
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1. Introduction

Mapping the excited hadron spectrum from QCD has become an established field in recent
years. As most hadrons are resonances of multiparticle scattering channels, one must resort to
techniques such as the Lüscher’s analysis, which connects infinite volume scattering amplitudes to
finite volume spectra of hadrons in a box [1, 2, 3, 4, 5, 6, 7]. These analysis has proven effective
in determining properties of many low-lying hadrons (see for example Ref. [8] and references
therein).

Identifying the existence of an excited state, however, does not elucidate the underlying struc-
ture. The determination of form-factors, charge radii, parton distribution functions gives insight
into the distribution of quarks and gluons of stable hadrons such as the proton. As in Lüscher
analyses, one can determine the structure of resonances and bound states within lattice QCD by
relating finite volume matrix elements to these infinite volume observables. Figure 1 illustrates a
road map for how one may attain, e.g. form factors, of resonances and bound states.
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Figure 1: Roadmap for determining infinite volume scattering observables from lattice QCD calculations.
Finite volume spectra and matrix elements, which are accessible through lattice QCD, are converted to
infinite volume scattering amplitudes through relations such as the Lüscher quantization condition and the
presented 2+J → 2 formalism. From these amplitudes, one must analytically continue to the resonance
or bound-state pole to determine properties such as mass, decay width, and form-factors.

To determine bound and resonant state form-factors, we consider a framework, first introduced
in Refs. [9, 10], that allows one to determine infinite volume 2+J → 2 transition amplitudes via
finite volume matrix elements. To gain confidence in this formalism developed, we provide two
non-trivial checks on the formalism. First, we show that the charge associated with a conserved
vector current is independent of finite volume corrections. The charge is protected from these
corrections via the Ward-Takahashi identity, which relates the 2+J → 2 transition amplitude to
the derivative of the 2→ 2 scattering amplitude. Second, we consider a scalar current to investigate
the L→ ∞ limit of the scalar charge of a bound state. We refer the reader to Ref. [11] for detailed
discussions of this study, where these results where first presented
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2. Two-hadron matrix element finite volume formalism

We first review the finite volume formalism for two-hadron matrix elements. For simplicity,
we will focus on the case of a vector current coupling to a system only in S-wave. Moreover,
we consider a mass-degenerate two-particle system, which are distinguished by their charge: one
which has charge Q0 and the other neutral. The formalism can easily be be generalized for arbitary
tensor currents and partial waves as in Refs. [9, 10].

The formalism requires knowledge of the two particle scattering amplitude as well as the
Lüscher poles, which are the solutions of the Lüscher determinant condition [1, 2]. For systems in
S-wave, the condition is a simple algebraic relation

M−1(sn) =−F(Pn;L) (2.1)

where sn ≡ E?2
n = E2

n −P2 is the Lüscher pole, Pn = (En,P) is the four-momenta associated with
the pole, M is the 2→ 2 S-wave amplitude, and F is the finite volume function

F(P;L) =

[
1
L3 ∑

k∈(2π/L)Z3

−
∫ d3k

(2π)3

]
1

2ωk((P− k)−m2 + iε)

∣∣∣∣
k0=ωk

(2.2)

with ωk =
√

m2 +k2. Equation (2.1) hold at the Lüscher pole, i.e. for the finite volume spectra of
the two interacting particles in a box of size L.

Once the finite volume spectra and 2→ 2 amplitudes are known, we can turn our attention to
2+J → 2 processes. For the S-wave case, the formalism in Refs. [9, 10] reduces to the relation

L3 〈P′n;L|J µ |Pn;L〉= W µ

L,df(P
′
n,Pn)

√
R(P′n)R(Pn) (2.3)

where R(Pn) is the generalized Lellouch-Lüscher factor [12, 13, 14]

R(Pn) = lim
E→En

E−En

M−1(sn)+F(Pn;L)
, (2.4)

and W µ

L,df is the finite volume quantity defined as

W µ

L,df(P
′,P) = W µ

df (P
′,P)+ f (Q2)M (s′)

[
(P′+P)µG(P′,P;L)−2Gµ(P′,P;L)

]
M (s). (2.5)

The first quantity in Eq. (2.5) is the infinite volume 2+J → 2 transition amplitude, which can be
written via an on-shell representation as

W µ

df (P
′,P) = M (s′)F µ(P′,P)M (s), (2.6)

where F µ is a generalized form-factor. In the kinematic region containing a bound state, F µ is a
real function (see [11, 15]).

The functions G and Gµ are finite volume functions which characterize power-law enhance-
ment in the volume due to on-shell intermediate states of the triangle diagram. Explicitly, Gµ is
defined as

Gµ(P′,P;L) =

[
1
L3 ∑

k∈(2π/L)Z3

−
∫ d3k

(2π)3

]
kµ

2ωk((P′− k)−m2 + iε)((P− k)2−m2 + iε)

∣∣∣∣
k0=ωk

,

(2.7)
with G having an identical expression with exception that the kµ in the numerator is absent. Fea-
tures of this function can be found in Ref. [10].
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3. Matrix elements of conserved vector currents

We first investigate the Q2 = 0 limit fo matrix elements of the temporal part of the conserved
vector currents, i.e. the finite volume corrections to the vector charge. Combining the equations in
Section 2, we can write the finite volume matrix element as

〈Pn;L| Q̂ |Pn;L〉=
F µ=0(Pn,Pn)+Q0

[
2Pµ=0

n G(Pn,Pn;L)−2Gµ=0(Pn,Pn;L)
]

− ∂

∂E M−1(s)|E=En +2EnG(Pn,Pn;L)−2Gµ=0(Pn,Pn;L)
, (3.1)

where Q̂ = L3J µ=0. We see that the only difference in between the numerator and denominator is
the first term. The G functions in the denominator arise from the derivative of the F function. An
important property W µ

df is found by considering the Ward-Takahashi identity,

lim
P′→P

W µ

df (P
′,P) = Q0

∂

∂Pµ

M (s) = 2Pµ Q0
∂

∂ s
M (s). (3.2)

Using Eq. (2.6), we can rewrite Eq. (3.2) as

F µ=0(P,P) =− ∂

∂E
M−1(s). (3.3)

We notice that this exactly relates the first two terms of the numerator and denominator of Eq. (3.1).
We conclude that the the charge associated with the conserved vector current is independent of
finite volume corrections. This non-trivial result of the formalism provides our first consistency
check against expectations of physical of the Ward-Takahashi identity. There is no expectation of
the charge of an arbitrary tensor current to remain independent of finite volume corrections as the
Lellouch-Lüscher factor is independent of the Lorentz structure of the current.

4. Two-hadron bound states and their matrix elements

Since matrix elements of vector charge contain no finite corrections in the zero-momentum
transfer limit, we consider now the bound state case of the system probed by a scalar current source
J . The particles are distinguished by the current, with one particle having a scalar charge gS while
the other is neutral and we neglect any contributions from its composite nature. Still working with
S-waves only, we consider a scalar bound state in the two-particle spectrum, i.e.

M (s)∼ (ig)2

s− sB
as s→ sB, (4.1)

where sB is the infinite volume bound state pole, with a mass MB =
√

sB, and g is the bound state
coupling. We can express the 2+J → 2 transition amplitude near the pole similarly

W (s′,s)∼ (ig)
i

s′− sB
FB(Q2)

i
s− sB

(ig) as s,s′→ sB, (4.2)

where FB(Q2) is the scalar form factor of the bound state and FB(0)≡ gS,B defines its scalar charge.
Alternatively, since the bound state is an asymptotic state, we may directly relate the scalar charge
to the matrix element,

gS,B = 〈PB|J |PB〉 . (4.3)
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Adapting the formulae laid out in Section 2 for scalar currents (Gµ → G and W µ →W ), we
can investigate the finite volume corrections to the scalar charge. We define the finite volume scalar
charge via the matrix element,

gP
S,B(L)≡ 2EB(L)L3 〈PB,L|J |PB,L〉 , (4.4)

where the infinite volume bound state scalar charge is recovered in the L→ ∞ limit, i.e. gS,B ≡
limL→∞ gP

S,B(L). Using Eqs. (2.3) and (2.5), the finite volume scalar charge is

gP
S,B(L) =

F (s)+gSG(P,L)
−∂sM−1(s)+G(P,L)−G0(P,L)/E

∣∣∣
P=PB(L)

. (4.5)

Note we have used that the single particle scalar charge is gS = f (0). Equation (4.5) represents the
all-orders expression for the finite volume scalar charge.
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Figure 2: (a) Finite volume energy spectrum as a function of mπ L for the pn-scattering parameters for
a system at rest and boosted one unit in the z-direction with P = 2πn/L. The solid lines represent the
exact spectrum form the Lüscher condition and the dashed lines the spectrum at O(e−κBL). The horizontal
line at En− 2m ∼ −2.21 MeV represents the binding energy of the system with binding momentum κB ∼
45.58 MeV. (b) Ratio of the finite volume bound state form factor, gP

S,B(L) = 2EB(L)L3 〈PB,L|J |PB,L〉,
to the infinite volume bound state scalar form factor gS,B at zero-momentum transfer as a function of mπ L.
The energy spectrum extracted shown in (a) was used to evaluate the finite volume matrix element. The
generalized form factor was assumed to be a simple energy-independent constant. The horizontal line at
gP

S,B(L)/gS,B = 1 represents the deeply bound state result. Figure and caption taken from Ref. [11].

It is now straightforward to expand Eq. (4.5) about L→ ∞. We first require the L→ ∞ limit
for the bound-state Lüscher pole,

sP
B(L) = sB +δ sP

B(L), (4.6)
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where δ sP
B(L) is the finite volume correction to the infinite volume bound state pole sB. One can

show that for the pure S-wave case that Eq. (2.1) gives that the finite volume correction is of the
form

δ sP
B(L) = g2F(PB,L)+O(e−2κBL) , (4.7)

where F(PB,L) is the F-function evaluated at the infinite volume bound state pole, and κB =√
m2− sB/4 is the binding momentum. Likewise, for L→ ∞, the matrix element Eq. (4.5) takes

the form

gP
S,B(L)

gS,B
= 1+δ sP

B(L)
∂

∂ s

[
FB(s)
gS,B

+g2 ∂

∂ s
M−1(s)

]

+
g2(gS−gS,B)

gS,B
G(PB,L)+

g2G0(PB,L)
EB

+O(e−
√

2κBL) . (4.8)

The second term on the right hand side contains infinite volume quantities evaluated at the bound
state pole mulitplied by the finite volume correction to the Lüscher pole, while the third and fourth
terms are corrections from the L→ ∞ expansion of the G functions.

As an illustration of the numerical effects, we consider the finite volume spectrum and matrix
element for the proton-neutron scattering parameters, shown in Fig. 2. We use an effective range
expansion to parameterize scattering amplitude, and assume that the single particle and bound state
scalar charges are identical. We compare the all-orders expressions, Eqs. (2.1) and (4.5), to the
leading order expressions obtain from Eqs. (4.7) and (4.8). As seen in Fig. 2, there are significant
deviations from the L→ ∞ expansion as compared to the all-orders expression, Eq. (4.5). This
illustrates a crucial need to consider general frameworks as in Refs. [9, 10] in order to correctly
asses the volume dependence.

5. Summary

In summary, the study presented provides two non-trivial checks on the recent formalism to
extract infinite volume 2+J → 2 amplitudes from Lattice QCD [9, 10]. First, we observed that
the charge of a conserved vector current remains independent of finite volume corrections, which
is built into the formalism via the Ward-Takahashi identity. Second, we examined the L→ ∞ limit
of a bound state scalar charge. Finite volume corrections arise from both the spectra and the G
functions of the formalism. For details, we refer the reader to Ref. [11]. More studies are underway
investigating the near threshold expansion of finite volume matrix elements via this formalism, as
well as a detailed study of the analytic behavior of 2+J → 2 transition amplitudes and resonance/
bound state form-factors.
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