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We present lattice determinations of the heavy quark masses and the strong coupling constant
obtained by two different methods in (2+1)-flavor QCD with Highly Improved Staggered Quark
(HISQ) action. Using lattice calculations of the moments of the pseudoscalar quarkonium cor-
relators at several values of the heavy valence quark mass we determine the strong coupling
constant in MS scheme at four low energy scales corresponding to mc, 1.5mc, 2mc and 3mc,
with mc being the charm quark mass. We obtain Λ

n f =3
MS

= 298±16 MeV, which is equivalent to
αs(µ = MZ ,n f = 5) = 0.1159(12). For the charm and bottom quark masses in MS scheme we
obtain: mc(µ = mc,n f = 4) = 1.265(10)GeV and mb(µ = mb,n f = 5) = 4.188(37)GeV. Using
lattice calculations of the QCD static energy at T = 0, or the static singlet free energy at T > 0 we
obtain αs(MZ) = 0.11660+0.00110

−0.00056, or αs(MZ) = 0.11638+0.00095
−0.00087. The novel feature of our analy-

ses that many lattice spacings are used in the continuum extrapolations, with the smallest lattice
spacings at T = 0, or at T > 0 being a = 0.025fm, or a = 0.008fm, respectively.
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1. Introduction3

The strong coupling constant and quark masses are important parameters of the Standard4

Model (SM), and thus their knowledge is required for its testing. Lattice QCD calculations play an5

increasingly important role in the determination of the quark masses and αs because of the increase6

in the available computational resources and algorithmic improvements in recent years.7

For the lattice determination of αs one calculates a quantity O(ν) that depends on a physical8

scale ν nonperturbatively on the lattice and compares it with the corresponding perturbative power9

series in αs(ν). One thus obtains the value of αs(ν) if the truncated power series in αs(ν) is10

sufficiently accurate for O(ν). This leads to the so-called window problem: ν has to be smaller11

than the lattice cutoff, a−1, to avoid large discretization artifacts, yet large enough to make the12

perturbative expansion accurate, i.e. ΛQCD� ν � a−1.13

Hence, very fine lattices are required, and controlling the discretization artifacts is the key14

obstacle in this endeavor. We focus on this challenge in the following discussion of the QCD static15

energy and the moments of quarkonium correlators in (2+1)-flavor QCD with the HISQ action.16

The T = 0 gauge ensembles underlying both calculations have been generated for the study of the17

(2+1)-flavor QCD equation of state [1, 2], and suffer from rather small spatial volumes and rather18

short Euclidean time directions. Moreover, since the bulk properties in the QCD thermodynamics19

have only a relatively mild dependence on the sea quark masses, the light sea quark masses are not20

fixed at the physical point, but at ml = ms/20 or ml = ms/5. In Sec. 2 we discuss the determination21

of αs from the QCD static energy. In Sec. 3 we discuss the determination of αs and heavy quark22

masses from the moments of quarkonium correlators. Finally, Sec. 4 contains our conclusions.23

2. Static energy and static singlet free energy24

The QCD static energy E(r) of a qq̄ pair, which depends on αs already at the tree level, is an25

observable up to an additive constant. The static qq̄ are strictly immobile, and their displacement r26

is a well-defined quantum number. E(r) is a function of r, of the QCD coupling αs = g2/4π , and of27

the masses of the N f sea quarks. E(r) is defined in terms of the large time limit of the expectation28

value of the time derivative of the Wilson loop WS(r, t). WS(r, t) has a self-energy divergence pro-29

portional to its circumference. While WS(r, t) can be defined as a smooth path-ordered contour in30

the continuum, WS(r, t) = exp
[
ig
∮
r,t dzµAµ

]
, it has to be defined as a rectangular Wilson loop on31

the lattice. Thus, there are additional cusp divergences, and the spatial lines introduce a path depen-32

dence on the lattice. Both issues may be ameliorated through link smearing. E(r) cannot depend33

on the fields at infinite time separation. Hence, E(r) may be defined as well through the spatial34

correlator of two temporal Wilson lines in Coulomb gauge. The definition in terms of this corre-35

lator avoids the cusp divergences, or the self-energy divergences and path dependence associated36

with the spatial distance between the two Wilson lines. A similarly constructed thermal correlator37

at the time equal to the inverse temperature τ = aNτ = 1/T defines the static singlet free energy38

FS(r/a,T ). FS(r,T ) is very similar to E(r) for r� 1/T . The details depend on the scale hierarchy,39

i.e. 1/r� αs/r� T � mD ∼ gT or 1/r� T � mD ∼ gT � αs/r. The result at order g5 for the40

second hierarchy [3] is within uncertainties compatible with the lattice throughout the accessible41

temperature range [4]. Thermal effects are known to be strongly suppressed for the first hierarchy,42

although no perturbative result is available. For a detailed discussion of the hierarchies see Ref. [5].43
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Since the lattice has a reduced symmetry (cubic group W3 instead of rotation group O(3)),44

there is only a finite set of displacements between the static qq̄ that are geometrically equivalent.45

Elat(r) is accessible on the lattice for r =
√

n2
x +n2

y +n2
z a, and nx, ny, nz = 0, 1, 2, . . .. In order46

to resolve small r, fine lattice spacings a are indispensable. For r ∼ a the lattice result Elat(r) is47

affected by severe discretization artifacts. The origin of these artifacts is apparent from the fact48

that the paths connecting the static qq̄ belong to different representations of W3. For r/a & 5 the49

artifacts of Elat(r) are usually of a similar size as the statistical errors, and thus cannot be resolved50

clearly. These artifacts can be understood to a large extent in terms of the tree-level calculation,51

E tree
lat (r) =−CFg2

∫ d3k
(2π)3 D00(k,k0 = 0) eik·r, (2.1)

i.e. one-gluon exchange for a static qq̄ pair without running coupling. These artifacts are due the52

gluon propagator D−1
00 (k,k0 = 0) = ∑

3
j=1 sin2

(
ak j
2

)
+ cw sin4

(
ak j
2

)
, where cw = 0 or cw = 1/3 are53

for the Wilson and Lüscher-Weisz (LW) actions, respectively. In the continuum Eq. (2.1) yields54

E tree
cont(r) =V tree

s (r) =−CFαs/r. A tree-level improved distance rI is defined by equating E tree
lat (r)≡55

−CFαs/rI = E tree
cont(rI), where rI depends on the path geometry, i.e. paths belonging to different56

representations of W3 correspond to unequal tree-level improved distances rI. This assignment is57

called the tree-level correction (TLC). These improved distances rI differ from the naive (bare)58

distances by up to 8% or 4% (at r/a = 1) for the Wilson or LW actions. On the one hand, TLC59

reduces the size of the residual artifacts of EQCD
TLC (r) to the level of the typical statistical errors in60

lattice simulations already at distances r/a & 3. On the other hand, TLC accounts for the largest61

part of the artifacts of EQCD
TLC (r) even at distances r/a . 3, since the coupling αs(1/r) is small at62

short distances. A similar pattern of artifacts still remains for EQCD
TLC (r). One may use an estimate63

for EQCD
cont (r), and calculate the necessary nonperturbative correction (NPC) beyond TLC. This has64

been achieved in two schemes that yield consistent answers. First, each distance r corresponds to65

different r/a on fine or coarse grids. Thus, EQCD
TLC (r) on fine lattices (at large enough distances) may66

serve as a continuum estimate for determining the residual artifacts of EQCD
TLC (r) on coarser lattices.67

This scheme has a systematic uncertainty as it requires interpolating EQCD
TLC (r) on fine grids to68

distances r where EQCD
TLC (r) is available on coarse grids. The other drawback is that this scheme69

lacks information for small r/a on fine lattices (most important for comparison to weak coupling).70

Second, one may compare to the weak-coupling result E(r) directly to estimate the correction. In71

this scheme, the weights of the data where corrections are needed must be reduced by hand, and one72

has to marginalize over the details of the utilized weak-coupling result. Lastly, the comparison must73

be restricted to the perturbative window, i.e. following [6] to r . 0.5r1. Due to the a2 errors of the74

gauge action, the artifacts of EQCD
TLC must be αn

s (a/r)2m, where m,n ≥ 1. Namely, the artifacts for75

fixed r/a are polynomials in the bare coupling αbare
s . The nonperturbative corrections from either of76

these estimates may be extrapolated in the gauge coupling α lat
s = αbare

s /u4
0 (tadpole-improved using77

the plaquette, u0 =
〈
Uµν

〉1/4) towards the continuum. Corrections of the order (α lat
s )2 are required78

for r/a < 2, while the order α lat
s is sufficient for 2 ≤ r/a <

√
8 at the present numerical accuracy.79

EQCD
NPC (r)' EQCD

NPC (r) for all β is statistically consistent up to the divergent, additive constants.80

The calculation of αs from EHISQ
lat (r) at T = 0 is straightforward. E(r) in any two regularization81

scheme differs by a constant, which is different for each β and has to be determined through a fit.82

First, EHISQ
lat (r) must be at small enough r that the perturbative expansion shows apparent conver-83

gence, which is satisfied for r . 0.5r1 [6]. In this range the sea quark mass effects can be neglected.84
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Figure 1: The nonperturbative lattice and the perturbative continuum results for EQCD(r) multiplied by
the distance, rE(r). (left) The T = 0 data [5] are NPC (colored bullets) or TLC (black crosses and gray
bullets). The colors indicate different lattice spacings of the NPC data. The line represents the three-
loop result with resummed leading ultrasoft logarithms, Eq. (3) in Ref. [5], corresponding to the central
value αs(MZ) = 0.1167 of the analysis of the T = 0 data with r/a≥

√
8 (gray bullets). The T = 0 NPC

data with r/a <
√

8 are well-aligned with the fit excluding these data, while the T = 0 TLC data with
r/a <

√
8 cannot be consistently described by a continuum result for any value of αs(MZ). (right) The

T > 0 NPC data [5] in different r/a windows are fully compatible with the same continuum result.

Second, one has to ensure that the artifacts can be neglected, i.e. use EHISQ
TLC (r) or EHISQ

NPC (r). Then85

one may simply compare the lattice result with N f sea quarks to the weak-coupling result with N f86

massless quarks with a fit of 1+Nβ parameters, with Nβ being the number of ensembles used.87

EHISQ
NPC (r) with up to six lattice spacings 0.08r1 ≤ a≤ 0.20r1 [5] yields for 0.076r1 ≤ r ≤ 0.24r188

αs(MZ) = 0.11660+0.00110
−0.00056, δαs(MZ) = (41)stat(21)lat(10)r1(+95

−13)
soft(28)us. (2.2)

Our result confirms that the nonperturbative correction captures the residual artifacts well, see89

Fig. 1 (left). After meeting the same two conditions as at T = 0, and restricting to r� 0.3/T , one90

may simply compare the T > 0 lattice data with the weak-coupling result at T = 0 in a similar fit91

of 1+Nβ parameters. The result is consistent with the T = 0 calculation. FHISQ
S (r,T ) with up to92

fifteen lattice spacings 0.027r1 ≤ a≤ 0.20r1 [5] yields for 0.026r1 ≤ r ≤ 0.1r193

αs(MZ) = 0.11638+0.00095
−0.00087, δαs(MZ) = (80)stat(21)lat(17)T>0(10)r1(+40

−06)
soft(15)us. (2.3)

In order to escape a possible contamination by T > 0 effects the analysis was performed with94

r/a≤ 2, which rendered use of the nonperturbative correction inevitable. Analysis with r/a≤
√

895

or r/a≤
√

12 would produce a similar result with smaller errors, see Fig. 1 (right). The uncertainty96

due to the T > 0 calculation has been estimated by comparing the results obtained with Nτ = 12,97

or Nτ = 16 with each other, or with the T = 0 for the same upper limit of the distance window both98

in terms of r/a and r/r1. The error budget is discussed in detail in Ref. [5]. All estimates of the99

perturbative uncertainty are dramatically reduced when the comparison is restricted to the smaller100

maximal distance r, while the central value hardly depends on the fit range for r . 0.45r1.101

3. Moments of quarkonium correlators102

Due to the periodic boundary condition in time that is used in most QCD lattice calculations,103

which implies a backward propagating contribution, the time moments on the lattice are defined as104

Gn(a,V ) =
Nτ/2

∑
t=0

tn {G(t,a,V )+G(Nτ − t,a,V )} , (3.1)
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where G(t,a,V ) is the local, renormalization group invariant (rescaled with the square of the bare105

heavy quark mass amh0) pseudoscalar quarkonium correlator on the lattice with volume V , where106

t = τ/a is the Euclidean time in units of the lattice spacing, a. Gn(a,V ) is finite for n ≥ 4, since107

G(t,a,V ) diverges as t−4. Larger values of mh result in larger discretization artifacts (amh)
n for108

Gn(a,V ). It is clear from Eq. (3.1) that, on the one hand, smaller n implies more sensitivity to the109

artifacts of the correlator at small times τ ∼ a, whereas, on the other hand, larger n implies more110

sensitivity to finite Nτ effects. It is favorable to consider the reduced moments Rn in the lattice111

calculation [7], where the Rn are ratios of the moments in QCD and in the free theory,112

Rn(a,V,mh) =

[
GQCD

n (a,V,mh)

G(0)
n (a,V,mh)

]pn

, pn =

{
1 (n = 4)
1

n−4 (n > 4)
. (3.2)

There are various cancellations between systematic effects in these ratios. These cancellations are113

particularly relevant wrt the effects of the lattice spacing a, of the heavy quark mass mh, and of the114

periodic time direction, and to some extent, wrt the finite volume V , too. In particular, the tree-level115

contribution to the artifacts, α0
s an, cancels exactly in the reduced moments for all n. Moreover, the116

uncertainties of Gn in QCD and in the free theory due to the error of the numerical tuning of amh0117

are subject to a strong compensation in Rn. The contribution for t > Nτ/2 is missing both in the118

numerator and denominator. It is possible to account for this by replacing the correlator for large t119

with cosh[am0(t−Nτ/2)], where m0 is the ground state mass and Nτ is sufficiently large. In the free120

theory it is easy to calculate directly at large enough Nτ such that finite Nτ effects can be neglected.121

A general parametrization of the finite volume error is122

Rn(∞)−Rn(V )

Rn(V )
=

([
δV GQCD

n (V )

GQCD
n (V )

]
−

[
δV G(0)

n (V )

G(0)
n (V )

])
×

{
1 (n = 4)
1

n−4 (n > 4)
, (3.3)

but simplifies under the reasonable assumption that the free field theory result is much more sensi-123

tive to the finite volume effects, i.e. that the first term in square brackets can be neglected. Estimat-124

ing δV G(0)
n (a,V,mh) via free field theory calculations using multiple box sizes is straightforward.125

Lastly, it is attractive to consider the ratios of the reduced moments, since statistical fluctuations126

and the errors due to the numerical tuning of the heavy quark mass cancel in these ratios to a large127

extent. A similar compensation may happen to a lesser extent as well for the discretization artifacts,128

for the effects of the periodic time direction, and for the finite volume effects.129

The moments of quarkonium correlators are known in the MS scheme at order α3
s . Quarko-130

nium correlators also receive nonperturbative contributions, the one due to the gluon condensate [8]131

being the largest. Thus, the reduced moments Rn[αs(ν),mh(νm),
〈

αs
π

G2
〉
] can be written as132

Rn =

(
1+

3

∑
j=1

rn j

[
mh(νm),

ν

mh(νm)

][
αs(ν)

π

] j

+
11
4

〈
αs
π

G2
〉

m4
h(νm)

)
×

{
1 (n = 4)(

mh0
mh(νm)

)
(n > 4)

, (3.4)

where the gluon condensate is known from τ decays [9],
〈

αs
π

G2
〉
= −0.006(12)GeV4. mh(νm) is133

the MS heavy quark mass at the scale νm, and αs(ν) is the MS strong coupling constant at the scale134

ν . In principle the renormalization scales ν and νm could be different [10], although most studies135

assume ν = νm. For this choice ν = νm = mh the coefficients rn j (mh(νm),ν/mh(νm)) simplify to136

mass-independent constants rn j of order one without any evident pattern, see Tab. 2 of Ref. [12].137

There are indications that the independent variation of ν and νm leads to significantly increased138

uncertainty estimates [11]. Finite size effects tend to be the dominant systematic uncertainties for139
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Figure 2: The lattice spacing dependence of the reduced moment R4, or of the ratio R6/R8 with the
HISQ action at the valence charm quark mass. The red filled squares correspond to the most recent
(2+1)-flavor HISQ result, PW19 [12], and clearly resolve the logarithmic lattice spacing dependence.
The green open squares correspond to the HISQ on (2+1)-flavor asqtad result, HPQCD08 [7], while the
blue open circles correspond to the (2+1+1)-flavor HISQ result, HPQCD14 [13]. The most simple fit of
R4 using only α lat

s (amh)
2 (black dashed line) is only feasible for a . 0.04fm.

the finer lattices, whereas the mis-tuning of the heavy quark masses tends to be the dominant sys-140

tematic uncertainty for the coarser lattices. The valence heavy quark masses were tuned with the141

spin-average of the pseudoscalar and vector channels for the ml = ms/20 ensembles, and with just142

the pseudoscalar mass for the very fine ml = ms/5 ensembles. Quarkonium correlators on ensem-143

bles with different strange sea quark masses indicate that sea quark mass effects are comparable to144

the statistical or systematic errors, i.e. they are statistically insignificant, and thus can be neglected.145

With the exception of the contributions from the condensates, which are from the scale ΛQCD,146

or from the even lower and less important scales of the sea quark masses, the relevant scale in the147

problem is the heavy quark mass mh0. As the contribution from the condensates has 200% uncer-148

tainty in the continuum, and is suppressed by four powers of the heavy quark mass, cf. Eq. (3.4),149

the associated discretization errors are negligible and cannot be resolved in the analysis. Hence, in150

the infinite volume limit the most general fit form for the discretization artifacts is given by151

Rn(a,mh)−Rn(0,mh) =
N

∑
n=1

J

∑
j=1

cn j (α
lat
s ) j (amh0)

2n, (3.5)

where the cn j are constants. The gauge coupling α lat
s = αbare

s /u4
0 (tadpole-improved using the152

plaquette, u0 =
〈
Uµν

〉1/4) parametrizes the logarithmic dependence on the lattice spacing; see153

Fig. 2. For lattice spacings coarser than a . 0.04fm some higher order terms in (α lat
s ) j or (amh0)

2n
154

have to be included in a fit, i.e. see Ref. [12] for a detailed discussion of the continuum extrapolation155

with up to eleven lattice spacings in the range 0.025fm. a. 0.109fm. Such sophisticated analyses156

indicate the upward curvature for R4, and the downward curvature for the ratios R6/R8, or R8/R10157

in the approach to the continuum limit for all heavy valence quark masses; see Fig. 2. For the higher158

moments Rn/mh0 (n≥ 6) no curvature can be resolved, since the error budget is dominated by lattice159

scale, r1/a. The continuum extrapolated results of the most recent valence HISQ results [12] on the160

(2+1)-flavor HISQ ensembles can be found in Tables 5 and 6 of Ref. [12]. Since sea quark effects161

are insignificant, these results can be considered as corresponding to physical sea quarks.162

αs(mh) can be obtained by fitting the continuum results of R4, R6/R8, or R8/R10 with Eq. (3.4).163

Using the thus obtained result αs(mh) in Eq. (3.4) for the higher moments mh(mh) can be calculated.164

Finally, combining αs(mh) and mh(mh) in the perturbative running one finally obtains the QCD165
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Lambda parameter ΛMS(N f = 3), which can be converted to αs(MZ), see Ref. [12] for a detailed166

discussion of these individual results, the error budget, and the details of the perturbative running167

and matching. In summary, the spread between the results for ΛMS(N f = 3) at mh =mc, 1.5mc, 2mc168

and 3mc is larger than the individual error estimates, which might hint at difficulties with the con-169

tinuum extrapolation for the larger quark masses. Taking the spread as a conservative estimate of170

the error of the unweighted average we obtain after running to MZ171

αs(MZ) = 0.1159(12), (3.6)

while restriction to mh ≤ 1.5mc results in αs(MZ) = 0.1166(7), which is consistent with Eq. (3.6).172

On the contrary, the determination of the heavy quark masses is without complications. Combining173

the error of r1 with the mh(mh) results, we obtain the MS charm and bottom quark masses as174

mc(mc,N f = 4) = 1.265(10)GeV, mb(mb,N f = 5) = 4.188(37)GeV. (3.7)

4. Conclusions175

On the one hand, the results for the heavy quark masses obtained from the moments of quarko-176

nium correlators are in excellent agreement with other results determined from lattice QCD [14].177

On the other hand, the results for the strong coupling constant from the QCD static energy and178

from the moments of quarkonium correlators are lower but marginally consistent with most other179

results determined from lattice QCD [14], but agree with each other quite well. Part of the spread180

may be due to the difficulty of the continuum extrapolation with the logarithmic lattice spacing de-181

pendence. Obvious routes to alleviating these issues might be a calculation of reduced moments or182

the static energy before the nonperturbative correction at the one-loop level instead of the tree-level183

or a simultaneous continuum extrapolation of the moments for different heavy quark masses.184
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