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1. Introduction

One of the more promising quantities with which to test the Standard Model is the anomalous
magnetic moment of the muon aµ = (g− 2)/2, given the strong tension between the theoretical
calculation (see, for example, Ref. [1]) and the experimental result [2]. The experiment at Fermilab
(E989), running now, is expected to reduce the experimental uncertainty by a factor of four, and
thus it is imperative for the theoretical calculation to obtain a similar reduction in uncertainty.

Given the improvements in lattice simulations of the leading hadronic contribution to the muon
g− 2 over the last decade or so, extracting this quantity with the required precision from a first-
principles approach is seeming much more likely. However, in addition to improving statistics on
the lattice data, many systematics must be understood and corrected for before a reliable result can
be obtained.

We focus here primarily on the systematics that enter when calculating the leading hadronic
contribution to the muon g−2 with staggered quarks in a finite volume. To do so, we have calcu-
lated these effects to next-to-next-to leading order (NNLO) in chiral perturbation theory (ChPT).
A more detailed description of our results can be found in Ref. [3].

2. Simulation details

The leading hadronic contribution to the muon g−2 can be obtained from the expression

aHVP
µ = 4α

2
∫

∞

0
dq2 f (q2)Π̂(q2), (2.1)

where f (q2) is defined in Ref. [4], and Π̂(q2) = Π(q2)−Π(0) is the subtracted hadronic vacuum
polarization, coming from the Fourier transform of the vector two-point function (we use the con-
served vector current here). In this work, we use the time-momentum representation:

Π(q2)−Π(0) = ∑
t

(
cosqt−1

q2 +
1
2

t2
)

C(t), C(t) =
1
3 ∑

~x,i
〈 ji(~x, t) ji(0)〉, (2.2)

where C(t) is the Euclidean time correlation function, averaged over spatial directions. Eq. (2.1)
becomes aHVP

µ (T ) = ∑t w(t)C(t), with the weight

w(t) = 4α
2
∫

∞

0
dω

2 f (ω2)

[
cosωt−1

ω2 +
t2

2

]
. (2.3)

The weight is sometimes modified by replacing the continuum Euclidean momentum-squared with
its lattice version ŵ(t), where the ω2 in the denominator of the first term in square brackets is
replaced with [2sin(ω/2)]2 [5].

In order to calculate the correlator in Eq. (2.2), we implement the noise reduction techniques
developed by RBC/UKQCD [6, 5] including a combination of all-mode and full volume low-mode
averaging. The precise details of the implementation of these techniques to the staggered Dirac
operator are discussed in Ref. [3].

The ensembles used are 2+1+1 HISQ configurations generated by the MILC collaboration [7],
and are listed in Ref. [3]. We simulated at three lattice spacings (a ≈ 0.06,0.09, and 0.12 fm) at
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approximately physical pion masses. The volumes all have a spatial volume of around (5.5 fm)3,
and mπL ≈ 3.7−3.9. For the two coarser ensembles we generated 3000 eigenvectors for the low-
modes, however only 2000 were used on the finest ensemble due to computational limitations.

3. Finite-volume chiral perturbation theory

In order to study the leading finite-volume effects we calculate the vector correlator to two
loops (NNLO) in ChPT. There are several strategies we could use for this. One option is to first
extrapolate our results to the continuum and then correct for the finite-volume using continuum
ChPT. The other option would be to first use staggered ChPT [8] in a finite volume and then
extrapolate to the continuum. Given that our pion masses and our physical volumes are not exactly
equal, the second approach would be better able to take these differences into account. However,
this would require applying staggered ChPT to two loops.

Instead we choose a hybrid approach. First we calculate the corrections using staggered ChPT
at one loop for each ensemble, and then extrapolate to the continuum. At this point, we calculate
the NNLO continuum finite volume corrections, without the use of (or need for) the staggered
taste-breaking corrections. There will still be a small systematic effect coming from the slight
mistunings of the pion masses and volumes, however it will be much smaller than if we were to
extrapolate to the continuum first, and then apply the complete NLO+NNLO continuum ChPT to
correct for finite-volume effects.

In Euclidean space we have performed a relatively straightforward calculation in the time-
momentum representation to obtain C(t) to NNLO:

C(t) =
10
9

1
3

{
1

Ld ∑
~p

~p2

E2
p

e−2Ept

[
1− 2

F2
1

Ld ∑
~k

(
1

2Ek

)
− 8(~p2 +m2

π)

F2 `6

]
(3.1)

+
1

2dF2
1

L2d ∑
~p,~k

~p2~k2

E2
pE2

k

Eke−2Ept −Epe−2Ekt

~k2−~p2

}
,

where we have defined Ep =
√

m2
π +~p2. The sums over ~p and~k are over the momenta 2π~n/L with

~n a three-vector of integers in a box with periodic boundary conditions. We define the renormalized
`r

6 by

`6 = `r
6(µ)−

1
3

1
16π2

(
1
ε
− log µ− 1

2
(log(4π)− γ +1)

)
, (3.2)

to take the limit d = 3+ ε → 3 in Eq. (3.1) to obtain a finite result for C(t).
Looking at the expression in Eq. (3.1) term-by-term, we can obtain expressions for the NLO

and NNLO finite volume corrections [3], defined by

∆aHVP
µ =

[
lim
L→∞

aHVP
µ (L)

]
−aHVP

µ (L) . (3.3)

Using the parameter values from Ref. [3], we obtain the results for ∆aHVP
µ at NLO (coming from

the “1” in square brackets on the first line of Eq. (3.1)), shown in the second column in Table 1.
From the same expression used for the NLO corrections, we can use the staggered pion spectrum to
include the effects of the different taste masses in finite volume (third column) and we can calculate
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a (fm) NLO taste (lattice) taste (cont) NNLO total
0.12121(64) 18.08 2.1 51.6 7.40 25.5±3.0
0.08787(46) 21.60 6.9 34.2 9.01 30.6±3.8
0.05684(30) 20.59 15.6 9.5 9.13 29.7±4.0

Table 1: ChPT FV corrections to the muon aµ , ∆aHVP
µ , in units of 10−10. The columns are discussed in the

text.

the effect of taste breaking in the pion masses in the infinite volume limit to NLO in ChPT, shown
in the fourth column of Table 1.

The NNLO continuum finite-volume corrections come from an application of the Poisson
summation formula to the remaining terms in Eq. (3.1), and the results are listed in the fifth column
of Table 1. Finally, we obtain the total NLO+NNLO corrections and show these in the final column
of Table 1. The errors are determined by assuming the omitted corrections are smaller than the
NNLO terms by the same factor (∼ 0.4–0.45) as the NNLO corrections are compared to the NLO
contributions. Finally, the effects of taste-splittings in the staggered pion spectrum have been taken
into account, and the details can be seen in Ref. [3].

4. Results & Conclusions

In addition to using the techniques discussed above to reduce statistical noise, we additionally
apply the bounding method of Refs. [5, 9] where we set upper and lower bounds on the correlator
for t > T : C(t) = 0 and C(t) =C(T )e−E0(t−T ) respectively, where the lowest energy state in the vec-
tor channel is E0 = 2

√
m2

π +(2π/L)2. At sufficiently large T the bounds overlap, and an estimate
for aµ can be made which may be more precise than simply summing over the noisy long-distance
tail.

In Fig. 1 results for the bounding method are shown for each ensemble. We calculate central
values for aµ by averaging over a suitable range where T is large enough for the bounds to overlap
but not so large that statistical errors blow up. The ranges used were 2.7-3.2 fm for the 483 and 643

ensembles, and 2.6-2.8 fm for 963 ensemble, with statistical errors computed using the jackknife
method.

a (fm) lattice value FV corr. FV + taste corr. FV+taste+mπ corr.
0.12121(64) 562.1(8.4) 564.2(8.4) 615.8(8.4) 613.6(8.4)
0.08787(46) 594.8(10.4) 601.7(10.4) 635.9(10.4) 630.2(10.4)
0.05684(30) 623.1(27.5) 638.7(27.5) 648.2(27.5) 647.1(27.5)

0 648.3(20.0) 657.9(20.0) 651.1(20.1)

Table 2: HVP contributions to the muon aµ , in units of 10−10, including ChPT corrections. The columns
are discussed in the text.

The corrected results are tabulated in Table 2 and shown with the continuum limits in Fig. 2
(left figure). In Table 2, the second column includes the results from the bounding method, the third
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Figure 1: Bounding method for total contribution to the muon anomaly, using the weighting function w.
Clockwise from the top we have the 483, 643, and 963 ensembles.

column includes the finite-volume corrections of Ref. [3], while the fourth column also includes
the infinite-volume taste corrections in Table 1. The fifth column adjusts the values shown in the
fourth column to a common pion mass of 135 MeV using NLO ChPT, to account for the small
mistunings of the pion mass. Continuum extrapolated values of each column are shown in the last
row. The left plot of Fig. 2 shows the continuum limits taken to get the results shown in Table 2.

After taking all of the corrections discussed into account, we obtain for our final result

aHVP
µ = (659±20±5±5±4)×10−10 = 659(22)×10−10 (4.1)

where the errors quoted are, respectively, statistical, continuum extrapolation, scale setting, and
higher orders in ChPT, and the final result shows them added in quadrature.

To explore a more precise comparison with other results, we adopt the window method of
Ref. [5]: aW

µ = 2∑
T/2
t=0 C(t)w(t)(Θ(t, t0,∆)−Θ(t, t1,∆)), with Θ(t, t ′,∆) = 1

2(1+ tanh((t− t ′)/∆)),
where t1− t0 is the size of the window and ∆ is a suitably chosen width that smears out the window
at either edge. We choose windows to avoid both lattice artifacts at short distance and large statisti-
cal errors at long distance. Results for several windows and both weighting functions are tabulated
in Ref. [3].

In Fig. 2 (right figure), we show an example continuum limit combined with the window
method with t0 = 0.4 fm, t1 = 1 fm, ∆ = 0.15.1 Squares (crosses) correspond to uncorrected data

1We note that since this talk was given, we have updated this figure to better compare with the domain wall fermion
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Figure 2: Left: Continuum limit after correcting the data according to columns 3, 4, and 5 (bursts, circles,
and triangles, respectively) of Table 2 with the uncorrected data (squares) shown for comparison. Right:
Continuum limit combined with the window method as described in the text.
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Figure 3: Contributions to the g− 2 from the connected light quark vacuum polarization from recent pub-
lications [9] (BMW), [5] (RBC/UKQCD), [10] (ETM), [11] (Fermilab/HPQCD/MILC), [12] (Shintani and
Kuramashi), [13] (Mainz).

points with weighting function w (ŵ); filled circles are taste-breaking corrected to NLO of w data
points. Solid curves show linear fits in a2; all three agree very well in the continuum limit. Dashed
curves denote a fully constrained parametrization (no degrees of freedom) using both a2 and a4

terms. Additionally we include the recent RBC/UKQCD computation using domain wall fermions,
as the results should agree in the continuum limit up to small systematics.

We also show the corresponding dispersive/e+e− value, using the R-ratio compilation of
Ref. [14]. The largest difference is about 7× 10−10, or roughly 1 % of the total HVP contribu-
tion to aµ . Given the uncertainties it is difficult to conclude there is a significant discrepancy,

calculation, and this will appear in the latest version of Ref. [3].
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though the spread seems uncomfortably large. A third, smaller, lattice spacing ensemble is being
generated by the RBC/UKQCD collaborations [15], which could firmly establish whether or not a
discrepancy exists. The window method is a useful approach to cross-check different calculations
using the most precise data available for each.
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