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1. Introduction

Parton distribution functions (PDFs) characterize the hadron structure at high-energy and are
crucial inputs for making theoretical predictions of experimental observables at e.g. the LHC. They
are defined as the expectation value of lightcone correlations in a hadron state and thus can not be
readily computed on a Euclidean lattice. Currently, the most widely used approach to determine
them is to assume a smoothly parametrized form and fit the unknown parameters to a large variety
of experimental data (for a recent review, see e.g. Ref. [1]). Lattice efforts on determining them
have been mainly focused on the computation of their moments, which are matrix elements of local
operators. The PDFs can be reconstructed in principle if all their moments are known. However, to
date only the first few moments can be calculated in lattice QCD [2, 3, 4, 5] due to power divergent
mixing between different moments operators and increasing stochastic noise for high moments
operators.

In the past few years, a new framework has been developed to circumvent the above difficulty,
which is now known as large momentum effective theory (LaMET) [6, 7]. According to LaMET,
the PDFs (as well as other parton observables), instead of its moments, can be accessed from lattice
QCD using the following procedure: 1) Construct an appropriate static-operator matrix element
(quasi-PDF) that approaches the PDF in the infinite momentum limit of the external hadron. The
quasi-PDF constructed in this way is usually hadron-momentum-dependent but time-independent,
and thus can be readily computed on the lattice. 2) Calculate the quasi-PDF on the lattice and
renormalize it nonperturbatively in an appropriate scheme. 3) Match the renormalized quasi-PDF
to the PDF through a factorization formula accurate up to power corrections that are suppressed by
the hadron momentum [6, 7].

Since LaMET was proposed, much progress has been achieved both in the theoretical under-
standing of the formalism and in the direct calculation of PDFs from lattice QCD (see Ref. [8]
and references therein). In particular, multiplicative renormalization of both the quark [9, 10, 11]
and the gluon [12, 13] quasi-PDF has been established in coordinate space. Nonperturbative renor-
malization in the regularization-independent momentum subtraction (RI/MOM) scheme as well as
a perturbative matching in the same scheme has been carried out for the nonsinglet quark quasi-
PDFs [14, 15, 16, 17] (see also [18, 19, 20]), as well as for the singlet quark and gluon quasi-
PDFs [12, 21]. Despite limited volumes and relatively coarse lattice spacings, the state-of-the-art
nucleon isovector quark PDFs determined from lattice data at the physical point have shown a
reasonable agreement [16, 17, 20] with phenomenological results extracted from the experimental
data [22, 23, 24, 25, 26]. Of course, a careful study of theoretical uncertainties and lattice artifacts
is still needed to fully establish the reliability of the results.

In this talk, I report recent theoretical progress in LaMET that enables us to extract both the
flavor-singlet quark PDF and the gluon PDF from lattice QCD.

2. Quasi-PDFs in LaMET

In high-energy collisions, the PDFs are defined as the hadron matrix elements of quark and
gluon nonlocal correlators along the lightcone. For example, the unpolarized quark distribution is
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defined as

fqi/H(x,µ) =
∫ dξ−

4π
e−ixP+ξ−

〈
P
∣∣q̄i(ξ

−)γ+W (ξ−,0)qi(0)
∣∣P〉 (2.1)

for a given flavor i, where x= k+/P+ is the longitudinal momentum fraction carried by the quark of
flavor i. µ is the renormalization scale in the MS scheme, Pµ = (P0,0,0,Pz) is the hadron momen-
tum, ξ± = (t± z)/

√
2 are the lightcone coordinates, and W (ξ−,0) = exp(−ig

∫ ξ−

0 dη−A+(η−))

is the Wilson line inserted to maintain the gauge invariance of the nonlocal correlator. A+ = A+
a ta

with ta being the generators in the fundamental representation of color SU(3) group.
Analogously, the unpolarized gluon distribution can be defined as [27]

fg/H(x,µ) =
∫ dξ−

2πxP+
e−ixP+ξ−〈P|F+i

a (ξ−)W (ξ−,0)F+i
a (0)|P〉, (2.2)

where Fµν
a = ∂ µAν

a −∂ νAµ
a −g fabcAµ

b Aν
c is the gluon field strength, and i runs over the transverse

indices. The above Wilson line W takes a similar form as the quark case, but is defined in the
adjoint representation.

The above quark and gluon PDFs can not be directly computed on the lattice due to their
real-time dependence. However, according to LaMET, they can be extracted from lattice calcula-
tions of appropriately constructed quasi-PDFs via a factorization or matching procedure. For the
unpolarized quark PDF, a well-suited quasi-PDF candidate is given by

f̃qi/H(x,µ,P
z) = N

∫ dz
4π

eizxPz〈P|qi(z)ΓW (z,0)qi(0)|P〉, (2.3)

where z is a spatial direction, Γ = {γz,γ t} is a Dirac matrix with the corresponding normalization
factor N = {1,Pz/Pt}, respectively. The choice with Γ = γ t has the advantage of avoiding mixing
with the scalar PDF when a non-chiral lattice fermion is used [18, 28].

For the unpolarized gluon PDF, we have also identified four operators [12] that are multi-
plicatively renormalizable and thus are suitable to define the corresponding quasi-PDFs. These
operators are

O(1)
g (z,0)≡ F ti(z)W (z,0)F t

i (0), O(2)
g (z,0)≡ Fzi(z)W (z,0)F z

i (0),

O(3)
g (z,0)≡ F ti(z)W (z,0)F z

i (0), O(4)
g (z,0)≡ Fzµ(z)W (z,0)F z

µ (0), (2.4)

where a summation over transverse (all) components is implied for i(µ). The corresponding gluon
quasi-PDF is then defined as

f̃ (n)g/H(x,µ,P
z) = N(n)

∫ dz
2πxPz eizxPz〈P|O(n)

g (z,0)|P〉, (2.5)

with the normalization factors being given by

N(2) = N(4) = 1, N(1) =
(Pz)2

(Pt)2 , N(3) =
Pz

Pt . (2.6)

All above gluon quasi-PDF operators are defined in terms of an adjoint gauge link. Alterna-
tively, they can be parametrized using gauge links in the fundamental representation U(z2,z1) [29].
Taking the operator O(3)

g as an example, one could use

O(3)
g (z2,z1) = 2Tr[F ti(z2)U(z2,z1)F z

i (z1)U(z1,z2)]. (2.7)
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Here Fµν = Fa
µνta and ta is the generator in the fundamental representation with tr[tatb] = 1/2δ ab.

Eq. (2.7) makes the implementation on the lattice simpler. The results presented below are mainly
focused on the definition in Eq. (2.4), but the results also apply to Eq. (2.7).

3. Renormalization and Factorization

The nonlocal quasi-PDF operators at different z do not mix under renormalization due to their
multiplicative renormalizability. This allows us to carry out a nonperturbative renormalization of
the quasi-PDF by calculating the renormalization factors as a whole for each z. This is analogous
to the renormalization of local composite operators, which is usually carried out in the RI/MOM
scheme [30] on the lattice. In the RI/MOM scheme, the renormalization of local composite op-
erators is done by demanding that the counterterm cancels all loop contributions to their matrix
element between off-shell external states at specific momenta [14, 15]. For multiplicatively renor-
malizable nonlocal quasi-PDF operators, the renormalization is similar but now one requires cal-
culating the renormalization factors at each z.

In principle, the quark and gluon quasi-PDFs can be renormalized separately and then matched
to the PDFs. However, in Ref. [12] we found that taking into account the finite mixing between
them at the renormalization stage will help improve the convergence in the implementation of the
matching in the RI/MOM scheme. To this end, it suffices to consider the following mixing of
quasi-PDFs (

O(n)
g (z,0)

Os
q(z,0)

)
=

(
Z11(z) Z12(z)/z
zZ21(z) Z22(z)

)(
O(n)

g,R(z,0)
Os

q,R(z,0)

)
, (3.1)

where Os
q(z1,z2) = 1/2[q̄i(z1)ΓW (z1,z2)qi(z2)− (z1 ↔ z2)] is the C-even combination of quark

operators, Zi j(z) are dimensionless factors, and z compensates for the different mass dimension
between the quark and gluon quasi-PDF operators. In the limit z→ 0 (taken after combining the
entries of the mixing matrix and the operators), the above mixing pattern reduces to the mixing
pattern of local operators.

The renormalization factors in the above mixing matrix can be determined using the following
renormalization conditions

Tr[Λ22(p,z)P]R
Tr[Λ22(p,z)P]tree

∣∣∣∣p2 =−µ2
R

pz = pR
z

= 1,
[Pab

i j Λ
ab,i j
11 (p,z)]R

[Pab
i j Λ

ab,i j
11 (p,z)]tree

∣∣∣∣p2 =−µ2
R

pz = pR
z

= 1,

Tr[Λ12(p,z)P]R

∣∣∣∣p2 =−µ2
R

pz = pR
z

= 0, [Pab
i j Λ

ab,i j
21 (p,z)]R

∣∣∣∣p2 =−µ2
R

pz = pR
z

= 0, (3.2)

where Λ{11,12} (Λ{21,22}) denote the amputated Green’s functions of O(n)
g (Os

q) in an offshell gluon
and quark state, respectively. P and Pab

i j are projection operators that are associated with the
quark and gluon matrix elements and define the RI/MOM renormalization factors. µR and pR

z are
unphysical scales introduced in the RI/MOM scheme to specify the subtraction point. b,c are color
indices and i, j Lorentz indices. In the nonsinglet quark PDF case with Γ = γ t [31], the amputated
Green’s function has the following structure

Λγ t (p,z) = f̃t(p,z)γ t + f̃z(p,z)
ptγz

pz + f̃p(p,z)
pt/p
p2 , (3.3)
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and P was chosen there in such a way that it projects out the coefficient of γ t only, which captures
all terms in Λγ t (p,z) that lead to UV divergences in the local limit. However, in general both the
coefficient of γ t and γz can lead to UV divergences in the local limit. This is the case e.g. in the
mixing diagrams. Thus, in the present case we will need to project out both coefficients to define
the RI/MOM counterterm. As for Pab

i j , a simple choice is Pab
i j = δ abg⊥,i j/(2−D), where g⊥,i j

denotes the transverse metric tensor and D is the spacetime dimension.

Defining the inverse of the renormalization matrix in Eq. (3.1) as

Z̄ =

(
Z̄11(z) Z̄12(z)/z
zZ̄21(z) Z̄22(z)

)
=

(
Z11(z) Z12(z)/z
zZ21(z) Z22(z)

)−1

, (3.4)

we then have from Eqs. (3.1), (3.2) and (3.4)

Z̄11(z) =
[Pab

i j Λ
ab,i j
11 (p,z)]treeTr[Λ22(p,z)P]

([Pab
i j Λ

ab,i j
11 (p,z)]Tr[Λ22(p,z)P]− [Pab

i j Λ
ab,i j
21 (p,z)]Tr[Λ12(p,z)P])

∣∣∣∣p2 =−µ2
R

pz = pR
z

,

Z̄12(z)/z =−
[Pab

i j Λ
ab,i j
11 (p,z)]treeTr[Λ12(p,z)P]

([Pab
i j Λ

ab,i j
11 (p,z)]Tr[Λ22(p,z)P]− [Pab

i j Λ
ab,i j
21 (p,z)]Tr[Λ12(p,z)P])

∣∣∣∣p2 =−µ2
R

pz = pR
z

,

zZ̄21(z) =−
[Pab

i j Λ
ab,i j
21 (p,z)]Tr[Λ22(p,z)P]tree

([Pab
i j Λ

ab,i j
11 (p,z)]Tr[Λ22(p,z)P]− [Pab

i j Λ
ab,i j
21 (p,z)]Tr[Λ12(p,z)P])

∣∣∣∣p2 =−µ2
R

pz = pR
z

,

Z̄22(z) =
[Pab

i j Λ
ab,i j
11 (p,z)]Tr[Λ22(p,z)P]tree

([Pab
i j Λ

ab,i j
11 (p,z)]Tr[Λ22(p,z)P]− [Pab

i j Λ
ab,i j
21 (p,z)]Tr[Λ12(p,z)P])

∣∣∣∣p2 =−µ2
R

pz = pR
z

. (3.5)

Denoting the hadron matrix element of O(z,0) as h(z,Pz,1/a), i.e., hi(z,Pz,1/a)= 〈P|Oi(z,0)|P〉,
i = q,g, the renormalized hadron matrix elements then read

h(n)g,R(z,P
z,µR, pR

z ) = Z̄11(z,µR, pR
z ,1/a)h(n)g (z,Pz,1/a)+ Z̄12(z,µR, pR

z ,1/a)/z hs
q(z,P

z,1/a),

hs
q,R(z,P

z,µR, pR
z ) = Z̄22(z,µR, pR

z ,1/a)hs
q(z,P

z,1/a)+ zZ̄21(z,µR, pR
z ,1/a) h(n)g (z,Pz,1/a).(3.6)

The renormalized quasi-PDF in the RI/MOM scheme can be obtained from the above renormalized
matrix elements by a Fourier transform given in Eqs. (2.3) and (2.5), respectively. Note that we
can take the continuum limit a→ 0 in hR since all terms singular in a have been removed by the
renormalization procedure. This means that the factorization of the renormalized matrix element
can be studied in the continuum.

In Ref. [21], we have derived a general factorization formula for the renormalized matrix ele-
ment above as well as for their Fourier transform, the quark and gluon quasi-PDFs, in the presence

4
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of mixing. As an example, we show the factorization of the latter

f̃ (n)g/H(x,P
z, pR

z ,µR) =
∫ 1

−1

dy
|y|

[
Cgg

(x
y
,

µR

pR
z
,
yPz

µ
,
yPz

pR
z

)
fg/H(y,µ)+Cgq

(x
y
,

µR

pR
z
,
yPz

µ
,
yPz

pR
z

)
fq j/H(y,µ)

]
+O

(M2

P2
z
,
Λ2

QCD

x2P2
z

)
,

f̃qi/H(x,P
z, pR

z ,µR) =
∫ 1

−1

dy
|y|

[
Cqiq j

(x
y
,

µR

pR
z
,
yPz

µ
,
yPz

pR
z

)
fq j/H(y,µ)+Cqg

(x
y
,

µR

pR
z
,
yPz

µ
,
yPz

pR
z

)
fg/H(y,µ)

]
+O

(M2

P2
z
,
Λ2

QCD

x2P2
z

)
, (3.7)

where a summation of j over all quark flavors is implied. The matching coefficients Ci j have also
been computed to one-loop in Ref. [21]. With the above formulas, we are in principle able to
extract the quark and gluon PDFs on the r.h.s. from the quasi-PDFs on the l.h.s.

4. Conclusion

To conclude, we have presented recent theoretical studies on the renormalization and factor-
ization of quark and gluon quasi-PDFs in the presence of mixing. This in principle allows us to
extract flavor-singlet quark PDFs as well as gluon PDFs from lattice calculations of the correspond-
ing quasi-PDFs.
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