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1. Introduction

The quark gluon plasma (QGP) produced in heavy ion collisions can be described as a nearly
ideal fluid (for a recent review, see Ref. [1]). In the QGP, the relaxation time of a heavy quark
of mass M is expected to be ∼ (M/T )t light

rel , with t light
rel being the relaxation time of the bulk (light)

degrees of freedom in the QGP, and T being the temperature. Since the relaxation time of the
heavy quark is much larger than the relaxation time of the bulk degrees of freedom, the heavy quark
dynamics can be described by a Langevin equation [2]. In the Langevin equation, the interaction
of the heavy quark with the medium is parameterized by the drag coefficient η and the heavy quark
momentum diffusion coefficient κ . They are related by the Einstein equation: η = κ/(2MT ).
Moreover, the heavy quark momentum diffusion coefficient is also a crucial parameter entering the
evolution equations describing the out-of-equilibrium dynamics of heavy quarkonium in a strongly
coupled QGP [3, 4].

The heavy quark momentum diffusion coefficient has been calculated in perturbation theory up
to next-to-leading order (NLO) [2, 5, 6]. The NLO correction is, however, large, thus questioning
the convergence of the perturbative expansion. Hence, non-perturbative lattice QCD calculations
seem to be better suited to determine this quantity.

The direct calculation of the heavy quark momentum diffusion coefficient from lattice QCD is
known to be difficult due to the extremely narrow transport peak, whose width one would need to
determine [7]. This difficulty can be circumvented by integrating out the heavy quark fields, and
relating the heavy quark momentum diffusion coefficient to the correlator of two chromoelectric
fields [8]. The corresponding spectral function does not have a transport peak, and its small fre-
quency, ω , behaviour is smoothly connected to the ultraviolet one [8], which is known at NLO [9].
Therefore, using the NLO result, one can constrain the functional form of the spectral function used
in the analysis of the lattice correlator in the high ω region, while the heavy quark momentum diffu-
sion coefficient is given by the ω→ 0 limit of the spectral function. Lattice calculations of κ along
these lines have been carried out in the deconfined phase of the pure SU(3) gauge theory [10 – 13].

At sufficiently high temperatures, perturbation theory should describe the heavy quark mo-
mentum diffusion coefficient adequately. Perturbation theory suggests that κ/T 3 decreases from
large values at temperatures close to the transition temperature Tc to smaller values as the temper-
ature is increased. This temperature dependence of κ/T 3 is phenomenologically important, since
a constant value of κ/T 3 fails to explain simultaneously the elliptic flow parameter v2 for heavy
quarks and the nuclear modification factor [14]. Previous lattice studies have either considered
only a single value of the temperature [13], or focused on a narrow temperature region [12]. No
significant temperature dependence of κ/T 3 was found.

2. Chromoelectric correlator

For a heavy quark of mass M � πT , the heavy quark effective theory allows to relate the
heavy quark momentum diffusion coefficient to a purely gluonic observable, the chromoelectric
correlator [15, 8]:

GE(τ) =−
3

∑
i=1

〈ReTr [U(β ,τ)Ei(τ,0)U(τ,0)Ei(0,0)]〉
3〈ReTrU(β ,0)〉 , (2.1)
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where β = 1/T and U(τ1,τ2) is the temporal Wilson line connecting τ1 with τ2. The chromoelectric
field, in which the coupling has been absorbed Ei ≡ gEi, is discretized on the lattice as [8]:

Ei(x,τ) =Ui(x,τ)U4(x+ î,τ)−U4(x,τ)Ui(x+ 4̂) . (2.2)

In the continuum, the leading order (LO) behavior of GE is analytically known [8]:

GE,pert(τ)

g2CF
= π

2T 4
[

cos2(πτT )
sin4(πτT )

+
1

3sin2(πτT )

]
, (2.3)

where CF = (N2
c − 1)/(2Nc) and Nc = 3 is the number of colors, while the NLO result follows

from numerically integrating over the NLO spectral function [9]. By matching the LO continuum
expression (2.3) with the LO expression in lattice perturbation theory, one can define a tree-level
improved distance GE,pert(τ) = GLO

E, lat(τ) [11]. We use this tree-level improvement throughout the
text usually without any further indication. Furthermore, the lattice chromoelectric field correlator
has to be multiplicatively renormalized GE,cont(τ) = ZEGE, lat(τ). For the discretization (2.2) the
renormalization coefficient ZE is known up to NLO [16]: ZE = 1+0.13771856909427574(1)g2

0.
We compute the discretized chromoelectric correlator (2.1) on the lattice using the multilevel

algorithm [17] with the Wilson gauge action. To perform the simulations we use the program of
Ref. [12]. We divide the lattice into 4 sublattices and perform 2000 multilevel updates on each
sublattice to compute a single configuration.
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Figure 1: Left: Discretization effects for a range of τT at T = 1.5Tc. Right: The discretized Eu-
clidean chromoelectric correlator (2.1) computed at the largest available volume for all considered
temperatures. GE, imp is the tree-level improved correlator, see text.

First, we show that finite volume effects are under control by presenting on the left hand side
of Fig. 1 the infinite volume extrapolation done with spatial sizes N3

s = 243, 323, 483 and temporal
size Nt = 12 at T = 1.5Tc. We observe that the extrapolated value differs from the largest volume
determination by less than the statistical errors and, therefore, we will use only Ns = 48 for the rest
of the analysis and rely on its statistical errors.

After the spatial volume has been fixed, we compute the discretized chromoelectric correlator
on the temporal sizes Nt = 12, 16, 20, 24 and temperatures T = 1.1Tc, 1.5Tc, 3Tc, 6Tc, 10Tc, 104Tc.
We match the temperatures to the simulation parameter β using the method of Ref. [18] with scale
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T/Tc Nt ×N3
s β Nconf T/Tc Nt ×N3

s β Nconf T/Tc Nt ×N3
s β Nconf

12×483 6.407 1350 12×483 7.193 1579 12×483 8.211 1807
1.1 16×483 6.621 2623 3 16×483 7.432 1553 10 16×483 8.458 2769

20×483 6.795 1575 20×483 7.620 1401 20×483 8.651 1613
24×483 6.940 2355 24×483 7.774 1300 24×483 8.808 2241
12×483 6.639 1801 12×483 7.774 1587 12×483 14.194 1039

1.5 16×483 6.872 2778 6 16×483 8.019 1556 104 16×483 14.443 1157
20×483 7.044 1622 20×483 8.211 1258 20×483 14.635 1139
24×483 7.192 2316 24×483 8.367 1067 24×483 14.792 1190

2.2 12×483 6.940 1535 2×104 12×483 14.792 1498

Table 1: Main simulation parameters and statistics

setting parameter t0, Tc
√

t0 = 0.2489(14). The statistics and parameters of our simulations are
given in Table 1. The results are presented in the right hand side of Fig. 1, where the data has been
made more readable by normalizing it with (2.3). Moreover, on the left hand side of Fig. 2, we scale
the data shown on the right hand side of Fig. 1 to physical units. This figure shows that the ratio of
the chromoelectric correlator to the free theory result is largely temperature independent implying
that the chromoelectric correlator is dominated by the vacuum part of the spectral function. To
further understand this behavior, we note that when the temperature is doubled then β stays the
same if the temporal extent is halved. This allows us to probe the thermal effects by considering
the ratio of two simulations with the same lattice spacings. This is done in the right hand side of
Fig. 2. We observe that at small τT there is no thermal dependence, while at large τT we see more
thermal effects as the temperature approaches the transition temperature. In particular, we see very
little temperature dependence in the T = 104Tc data.
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Figure 2: Left: The data of the right hand side of Fig 1 in physical units. Right: Ratio of simulations
with the same β .

Next, we perform the continuum limit with the lattices listed in the Table 1. To do this we
interpolate the data over continuous values of τT with an 8th order polynomial ansatz. We perform
the continuum limit with the three largest lattice sizes Nt = 16, 20, 24 and check the systematics
by also including the Nt = 12 lattice to the extrapolation and adding the difference in quadrature.
For 0.18 < τT < 0.45 we have χ2/d.o.f. < 2.5 for the larger set of lattices. Outside of the 0.18 <

τT < 0.45 range the continuum limit appears less under control. The continuum limit procedure is
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illustrated in the left panel of Fig. 3 for selected values of τT .
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Figure 3: Left: The continuum limit at selected values of τT . Right: The continuum limit at
T = 1.1Tc compared to the correlator obtained from the ansatz (3.4) for different values of κ .

3. Heavy quark momentum diffusion coefficient

In order to compute the heavy quark momentum diffusion coefficient κ from the Euclidean
correlator (2.1), one relates the correlator to the spectral function ρ(ω):

GE(τ) =
∫

∞

0

dω

π
ρ(ω)K(ω,τ) , K(ω,τ) =

cosh
(

ω

T

(
τT − 1

2

))
sinh

(
ω

2T

) , (3.1)

which, in turn, is related to κ [8]:

κ = lim
ω→0

2T ρ(ω)

ω
. (3.2)

The spectral function ρ(ω) is known up to NLO [9] and for T = 0 reads:

ρ
NLO
T=0 (ω) =

g2(µω)CFω3

6π

[
1+

g2(µω)

(4π)2 Nc

(
11
3

ln
µ2

ω

4ω2 +
149
9
− 8π2

3

)]
. (3.3)

We set the scale µω so that for ω & 0.89T the NLO contribution in (3.3) vanishes and for ω . 0.89T
the NLO correction to the gauge coupling in EQCD vanishes [19], i.e., for ω & 0.89T we choose

ln µω = ln(2ω)+
24π2−149

66
, and for ω . 0.89T we choose ln µω = ln(4πT )− γE−

1
22

. Clearly,
this choice is somewhat arbitrary, and in the final analysis one will need to assess the uncertainty
related with it.

In order to see how much of the behaviour of the chromoelectric correlator shown in the
right panel of Fig. 1 can be captured by perturbative QCD, in the right panel of Fig. 3 we have
changed the normalization of the data from GE,pert, which includes only the LO contribution given
in Eq. (2.3), to GE,norm, which is (3.1) evaluated with the NLO spectral function given in Eq. (3.3)
and with the renormalization scale fixed in the way discussed in the previous paragraph. With the
normalization GE,norm we expect to see a plateau at low τT , and, indeed, we do see an indication
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of such a behavior. However, the plateau is not exactly at 1, indicating possible systematic ef-
fects coming from neglected higher order contributions. To circumvent this we normalize the data
to 1 [10] at τT = 0.18, and add a 1% systematic error to the normalization from the choice of the
normalization point location.

To perform a preliminary extraction of κ from our data, we employ for the spectral function
the very simple ansatz:

ρansatz =
κω

2T
θ(Λ−ω)+ρ

NLO
T=0 (ω)θ(ω−Λ) , (3.4)

where ρNLO
T=0 is given by (3.3) and Λ is set so that κΛ/(2T ) = ρNLO

T=0 (Λ). Computing GE with the
assumption (3.4) allows to determine the values of κ that match the lattice data the best. This
procedure is illustrated on the right hand side of Fig. 3. To account for the uncertainty related to
the choice of the ansatz for the spectral function, we double the errors shown in Fig. 3. Finally, we
find

2.28 <
κ

T 3 < 3.57 for T = 1.1Tc , (3.5)

1.99 <
κ

T 3 < 2.69 for T = 1.5Tc , (3.6)

1.05 <
κ

T 3 < 2.26 for T = 3Tc , (3.7)

0 <
κ

T 3 < 1.5 for T = 6Tc , (3.8)

0 <
κ

T 3 < 0.91 for T = 10Tc , (3.9)

0 <
κ

T 3 < 0.39 for T = 104Tc . (3.10)

Our results agree with the existing determinations in the low T regime [10 – 13, 20]. Outside of this
regime, we observe that κ/T 3 depends on the temperature, as expected from perturbation theory,
becoming smaller at higher ones.
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