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We show recent results of the application of spectral analysis in the setting of the Monte Carlo
approach to Quantum Gravity known as Causal Dynamical Triangulations (CDT), discussing the
behavior of the lowest lying eigenvalues of the Laplace-Beltrami operator computed on spatial
slices. This kind of analysis provides information about running scales of the theory and about the
critical behaviour around a possible second order transition in the CDT phase diagram, discussing
the implications for the continuum limit.
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1. Introduction

Formulating a consistent quantum field theory of gravity has proved to be a difficult task, since
the action correctly describing the classical theory, the Einstein-Hilbert action, is nonrenormaliz-
able from a perturbative point of view [1]. However, there is the possibility of a nonperturbative
mechanism for renormalization, first envisaged by Weinberg and known as Asymptotic safety sce-
nario [2]: the region of vanishing (bare) couplings in the phase diagram is not necessarily an UV
fixed point for the RG flow, but this does not excludes that an UV fixed point actually exists in
another region of the phase diagram, not under the reach of perturbative asymptotic series.
The RG flow of the Einstein-Hilbert theory, plus additional terms in the action, can be studied
nonperturbatively using Functional Renormalization Group techniques (FRG) [3]. Another non-
perturbative approach is numerical, based on Monte Carlo simulations of a lattice-regularized field
theory. The approach we discuss in the present report is called Causal Dynamical Triangulations
(CDT), where the action used is the Einstein-Hilbert one, discretized in the Regge formalism [4],
and with manifolds approximated as piecewise-linear manifolds with appropriate causal conditions.
The main goal of the CDT program is to show that, in the phase diagram of the theory, there ex-
ists a second order critical point where some definition of correlation length diverges, and that the
critical region around such point describes a theory of quantum gravity consistent with our current
understanding of the expected semiclassical behavior.
The CDT phase diagram shows a very rich structure with four phase identified as A, B, CdS and Cb,
and two possible second order lines; we refer the reader to [5, 6] for more details.

One of the most difficult problems in CDT without matter fields is the definition of local ob-
servables that can be associated to correlation lengths, in order to properly investigate the critical
properties of the system and the continuum limit.
Some recent advances in this direction came from the introduction of spectral analysis of CDT
configurations [7], that is, the analysis of eigenvalues and eigenvectors of the Laplace-Beltrami
operator. Here we discuss some of the results obtained, focusing on the analysis of the critical
properties of the (seemingly second order) transition line between phase Cb and CdS, which repre-
sents the most promising candidate for taking the continuum limit of a quantum theory of gravity.

2. Numerical setup and spectral graph methods

Unlike the similar approach called Euclidean Dynamical Triangulations (EDT) [8, 9, 10, 11,
12], in CDT one enforces a causal condition of global hyperbolicity [13]. This implies that any
configuration (simplicial manifold) can be foliated into spatial slices with well defined euclidean
time. Due to this condition, and to the absence of singular points in the simplicial manifold, the
topology of spatial slices is constant through slices. Here we consider simulations with S3 topology
of the slices and with periodic conditions in the Euclidean time.

Spatial slices in CDT have only spatial links of uniform length (the lattice spacing); this allows
us to faithfully represent them by their dual graph, that is the pair of sets G = (N,E), where the
set of nodes N corresponds to spatial tetrahedra, while the set of edges represents the adjacency
relations between tetrahedra connected by a facet. The graph analogue of the Laplace-Beltrami

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
1
1
6

Spectral Methods in Causal Dynamical Triangulations Giuseppe Clemente

operator is called the Laplace matrix, which is sparse, linear and symmetric, and acts on the space
of real-valued functions on N ({ f : N→ R} ∼= R|N|); see reference [7] for details.

The updating algorithm used for sampling the path integral is Metropolis-Hastings one, con-
sisting of a set of local moves (see Ref. [5, 6] for more details). In all simulations we used Nt = 80
spatial slices, keeping the total spatial volume VS,tot fluctuating around a fixed target volume by
tuning one of the bare parameters (k4).

In the following section we introduce some idea which we used to analyze and interpret nu-
merical results.

2.1 Useful concepts from spectral analysis

The most interesting spectral quantities, describing the spatial geometries at large scales, are
the eigenvalues in the lower spectrum, in particular the lowest (non-zero) one λ1, which is called
spectral gap or usually referred to as algebraic connectivity, since it quantifies the degree of con-
nectedness of the manifold or graph (see ref. [7]). Notice that the LB operator is the one which
enters the diffusion equation (or the wave equation), therefore, one can also interpret its eigenvalues
as the diffusion rates (or the wavenumber squared) of their associated eigenmodes: a large value of
the spectral gap means a fast diffusion (or small wavelength) for the slower mode, which, in turn,
means an overconnected geometry, where all space is collapsed into a small region (the diameter
is observed to grow logarithmically with the volume). Another quantity of interest is n(λ ), which
counts how many eigenvalues fall below λ , which, for smooth manifolds, has an useful asymptotic
behaviour called Weyl’s law [14]:

n(λ )∼ ωd

(2π)d V λ
d/2, (2.1)

where V and d are respectively the volume and the local dimension of the manifold, while ωd is
the volume of a d-dimensional ball of unit radius. Inspired by Eq. (2.1), we defined a new function
dEFF(λ ), whose role is the one of an effective dimension of the manifold as a function of the
length-scale (dictated by λ ):

dEFF(λ )≡ 2
d log(n/V )

d logλ
. (2.2)

3. Numerical Results

We begin by considering the spectra of the Laplace matrix for spatial slices of configurations
deep into the A, B and CdS.
Eqs. (2.1) and (2.2) suggest the possibility of an universal scaling of n/VS as a function of λ : indeed
we observe a remarkable collapse in the scatter plots λ vs n/VS, independent of the slice (spatial)
volume VS, but dependent, in general, on the position in the phase diagram. Figure 1 shows the
averages of λ in bins of n/VS, for the three phases aforementioned; these curves are then used to
estimate the running effective dimension dEFF by Eq. (2.2), as shown in Figure 2.
The main distinguishing feature of spectra of slices in phase B (actually its unique spatial slice for
each configuration) is the presence of a large spectral gap λ1, which is observed to be independent
on the total volume. As argued in the previous section, this large value is associated to a highly-
connected geometry: indeed, the diverging effective dimension at larger scales (small n/VS from
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Weyl’s correspondence) suggests that slices in B phase do not seem similar to manifolds at all. The
CdS and A phases, even if differing by the correlation between slices with near slice-times (high for
CdS, but vanishing for A), show a similar behavior of the λ vs n/VS distributions. In particular, we
observe a vanishing spectral gap, with a power-like scaling at the large scales; the running effective
dimension observed stays relatively constant in the large to intermediate scale, but here it is frac-
tional, showing a fractal-like behavior of the geometry.
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Figure 1: Averages of λn versus n/VS computed
in bins of n/VS for slices taken from configura-
tions sampled deep into the A, B and CdS phases:
(k0,∆) = (5,0.6), (2.2,−0.2) and (2.2,0.6) re-
spectively. The volume is fixed to VS,tot = 40k
for configurations in A and CdS phase, and to
VS,tot = 8k for configurations in B phase.
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Figure 2: Running effective dimension dEFF

(using definition Weyl’s law) for the curves
shown on the left Figure, obtained by running
averages of the logarithmic derivative. The curve
associated to the B phase is diverging for n/VS→
0, but we focused on the range dEFF ∈ [1,5] for
readability of the other two curves.

3.1 Spectral properties of the Cb phase

Configurations in the Cb phase have the characteristic feature that their slices have geometric
properties which alternate in the slice-time [15, 16] so that two distinct classes of slices can be
identified. This fact is evident in the low-lying spectra, as can be seen in Figure 3: slices in the bulk
of Cb phase configurations can be separated in two distinct classes by the value of their spectral
gap, changing abruptly for adjacent slices even by two orders of magnitude; in the CdS phase,
instead, there is no sharp distinction, apart from a volume-dependent behavior connected to Weyl-
like scaling. Indeed, the geometric properties of the two classes of slices parallel the properties of
the B phase (for the gapped ones) and of the CdS phase (for the non-gapped ones), which brought
us to call them respectively B-like and dS-like. A more general view of the distribution of spectral
gaps for different points of the phase diagram (in a fixed k0 = 2.2 line) is given in Figure 4, which
shows well the separation of in the two classes for Cb slices, and how this separation disappears
in going from the Cb to the CdS phase. This observation suggests to use the spectral gap of B-like
slices in the Cb phase as an order parameter for the Cb-CdS transition, which in literature has been
claimed to be second-order by using different methods [15, 16]. This will be the focus of the next
section.
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Figure 3: Averages of λ1, λ20 and λ100 as a func-
tion of the slice-time for configurations in Cb and
CdS phases.
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Figure 4: Distributions of λ1 (vertically) for
k0 = 2.2 and variable ∆ for configurations with
total spatial volume VS,tot =

N41
2 = 40k

3.2 Spectral study of the critical properties of the Cb-CdS transition

First of all, in order to use the spectral gap of B-like slices in Cb configurations, we need to
study separately the two classes of slices (details can be found in [17]). Figure 5 shows a plot
of 〈λn〉 vs 1/VS for the dS-like class, where the behavior is compatible (χ2/d.o.f. ' 1) with a
vanishing gap in the thermodynamical limit (as expected by Weyl’s law). The picture is different
for B-like slices (Figure 6), where the extrapolations to thermodynamical limit show, not only a
non-vanishing spectral gap 〈λ1〉∞, but distinct values of the extrapolations for different eigenvalues
〈λn〉∞; this fact will be discussed in the conclusions.
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Figure 5: Weyl scaling for some eigenvalue
〈λn〉 (n = 1,3,5) of dS-like slices at (k0,∆) =

(0.75,0.4), with vanishing extrapolations in the
thermodynamical limit.
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Figure 6: Weyl scaling for some eigenvalue
〈λn〉 (n = 1,3,5) of B-like slices at (k0,∆) =

(0.75,0.4), where the thermodynamical limit ex-
trapolations are shown on the vertical axis.

In Figure 7 we report some 〈λn〉∞ (n= 1 and 5) as a function of ∆ along two lines of simulations
at k0 = 0.75 and k0 = 1.5; since, on the immediate vicinity of the critical point, B-like and dS like
classes mix, it is difficult to separate them and take the thermodynamical limit, therefore, some
values of ∆ are excluded from Figure 7.
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Figure 7: 〈λn〉∞ in B-like slices as a function of ∆ for different values of k0 and n, together with best fits of
the scaling equation.

On dimensional grounds, different 〈λn〉∞ are associated to different inverse squared lengths,
which however, for the continuum limit to be meaningful, should scale proportionally to each other
around a critical point, i.e., with a common critical index. Based on this observation, we tried to fit
the data using the scaling formula

〈λn〉∞ = An(∆c−∆)2ν , (3.1)

where only the An coefficients depend on n. A combined fit, including n = 1,5, yields ∆c =

0.635(14), ν = 0.55(4) for k0 = 0.75 (χ2/d.o.f. = 31/26), and ∆c = 0.544(36), ν = 0.82(12)
for k0 = 1.50 (χ2/d.o.f. = 6/14). Similar and consistent results are obtained including different
values of n, or if the eigenvalues are fitted separately. In principle, our best fits suggest that the
index ν may change along the transition line; however, a global fit in which ν is set equal for both
k0 works equally well, yielding ν = 0.59(4), ∆c(k0 = 0.75) = 0.656(15), ∆c(k0 = 1.5) = 0.479(10)
with χ2/d.o.f.= 47/41.

4. Conclusions

We discussed some recent results obtained from the analysis of the spectrum of the LB operator
define on spatial slices of CDT configurations [7, 17], focusing in particular on the role of the Cb

phase and the Cb-CdS transition, which represents the most promising candidate for a continuum
limit. In particular, we have shown that the two classes of slices in the Cb phase have geometric
characteristics analogue to the B and CdS phases, with a gapped and non-gapped structure of the
spectra respectively.
The thermodynamical limit of the lowest eigenvalues 〈λn〉∞ of B-like slices shows the emergence
of a hierarchy of distinct characteristic lengths, which could be interpreted as a set of dynamical
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mass scales, connected to the propagation of massless scalar fields in the sampled geometries.
Approaching the CdS phase, these mass scales appear to vanish with a common critical index, as
expected by a lattice field theory approaching the continuum limit.
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