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The rare second-order weak decay KL→ µ+µ− is precisely measured and sensitive to the struc-
ture of the weak interactions at short distances. However, these effects are obscured by a large
third-order, long-distance contribution to this decay in which the muon pair is created by two
photons. We will discuss the prospects for computing this third-order electroweak process us-
ing lattice QCD. As a first step in such a calculation a method will be presented for the lattice
calculation of the simpler two-photon decay π0→ e+e−.
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The rare decays of K mesons provide important opportunities for the discovery of physics
beyond the standard model. For such processes a combination of highly sensitive experiments with
increasingly accurate lattice QCD calculations should result in continually more sensitive tests of
the standard model. The KL-KS mass difference, the decay K+ → π+νν and the CP-violating
parameters ε and ε ′ are well-known examples. Here we will explore a less familiar example: the
strangeness changing neutral current process KL→ µ+µ−.

This decay arises as a one-loop, second-order weak process involving the exchange of two
W± bosons or one W± and one Z0 [1]. The second-order decay amplitude can be computed in the
standard model with the kaon decay constant fK as the only required hadronic input. However, this
test of the standard model at second order is complicated by the presence of an order α2

EMGF decay
amplitude of approximately the same size.

Thus, we might hope to use lattice QCD to perform an accurate calculation of this background,
two-photon process so that the complete decay could then be computed in the standard model.
While such a calculation contains many new and potentially difficult challenges, it is similar in
some respects to the calculation of the hadronic light-by-light (HLbL) scattering contribution to
the anomalous magnetic moment of the muon, a process that does not include a weak interaction
Hamiltonian but does involve three (not two) internal photon lines and which can be computed
successfully using lattice QCD [2].

1. KL→ µ+µ− decay

We focus on the KL → µ+µ− decay because, in contrast to the corresponding KS decay, its
branching fraction is accurately measured: BR(KL → µ+µ−) = 6.84± 0.11)× 10−9 [3]. The
O(α2

EMGF) background is described by a complex amplitude whose imaginary part is determined
by the optical theorem and the known KL→ γγ decay rate. Using the notation of Ref. [1]:

Γ(KL→ µ+µ−)
Γ(KL→ γγ)

= 2βµ

(
αEM

π

mµ

MK

)2 (
|Fimag|2 + |Freal|2

)
. (1.1)

The known decay rate and imaginary part determine |Freal| = 1.167±0.094. Finally we can write
Freal = (Freal)EM +(Freal)weak where the standard model predicts at one loop: (Freal)weak =−1.82±
0.04. Thus, a lattice calculation of (Freal)EM with 10% accuracy would determine (Freal)weak to 6%
or 17% depending on whether Freal and (Freal)weak have the same or opposite signs.

While there are encouraging parallels between the two-photon contribution to KL → µ+µ−

decay and the HLbL amplitude, there is a very important difference: the entire HLbL calculation
can be Wick rotated and computed directly in Euclidean space. The KL→ µ+µ− amplitude is com-
plex, with threshold singularities and cannot be easily expressed as a Euclidean space calculation
which would be required to directly apply lattice QCD.

A better analogue to the KL→ µ+µ− decay calculation is the calculation of the KL-KS mass
difference, ∆MK . Figures 1 and 2 provide schematic representations for each process. As in the
calculation of ∆MK , the KL→ µ+µ− decay amplitude can be written as a Euclidean-space Green’s
function in which the five weak or electromagnetic operators are integrated over a finite time region
−T/2≤ t ≤ T/2 which lies between the initial kaon operator and the operators destroying the final
two muons, each carrying the three-momentum required by energy conservation. For both the ∆MK
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and KL→ µ+µ− cases, one can recognize the correct non-covariant, perturbation theory expression
for the amplitude of interest among the terms that result from the two or five time integrals.

K0
LJµ

µ−

µ+

Jµ HW

K0
L

µ−

µ+

γµ

γν

HW HW K0K
0

Figure 1: Schematic repre-
sentation of the calculation
of the KL-KS mass differ-
ence. The two weak op-
erators HW should be inte-
grated over a temporal vol-
ume−T/2≤ t ≤ T/2 lying
between the initial K0 and
final K0. The thick solid
line represents the hadronic
part of the amplitude.

K0
LJµ

µ−

µ+

Jµ HW

K0
L

µ−

µ+

γµ

γν

HW HW K0K
0

Figure 2: Schematic representation of the calculation
of the KL→ µ+µ− decay. Here all five operators rep-
resented by dark dots should be integrated over a tem-
poral volume ±T/2 lying between the initial K0 and
the final two muons. The thick solid line represents the
hadronic part of the amplitude for a specific time order.

However, also for both cases, additional terms will appear in these time-integrated Green’s
functions coming from the limits ±T/2 of integration. These terms would vanish in a standard
Minkowski space calculation. In Euclidean space most such terms also vanish but a few, associated
with intermediate states less massive than the initial kaon, will contribute unphysical contributions
growing exponentially with T that must be removed. While such removal is practical for the case
of ∆MK , it represents a substantial barrier to the lattice calculation of KL → µ+µ−. Examining
the possible 120 different time orderings of the five internal vertices in Fig. 2 and identifying and
evaluating the exponentially growing terms presents a serious challenge.

Since much of the diagram appearing in Fig. 2 involves standard relativistic Feynman pertur-
bation theory, one might hope that for those parts of the diagram, one could avoid the complexities
of non-covariant perturbation theory outlined above. In fact, such a simplified treatment is possible
and is best illustrated by considering the less complicated decay π0→ e+e−.

2. π0→ e+e−

We now present a method to compute the simpler decay π0 → e+e− using lattice methods
which exploits Feynman perturbation theory for the internal electron and photon lines. We begin
with the standard Minkowski-space expression for the decay amplitude

Aπ0→e+e− =
∫

d4wLµν(k−,k+,w)〈0|T
{

Jµ(w/2)Jν(−w/2)
}
|π0(~P = 0)〉 (2.1)

where the leptonic factor in this amplitude is given by the usual Feynman expression

L(k−,k+,w)µν =
∫

d p0

∫
d3 p u(~k−)γµ

/p− /k++me

(p− k+)2 +m2
e− iε

γνv(~k+) (2.2)

· 1
(p− P

2 )
2− iε

1
(p+ P

2 )
2− iε

e−ip·w.
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The amplitude L(k−,k+,w)µν is the standard Feynman expression for the three electron lines and
two photon lines in Fig. 2. To be concrete, the Feynman diagram corresponding L(k−,k+,w)µν is
repeated with the momentum assignments in Fig. 3. Here P = (~0,P0) is the four-momentum of the
π0, chosen to be at rest. The two factors in Eq. (2.1) are connected by their common position space
arguments ±w/2. Here w is the difference between the space-time locations of the two hadronic
electromagnetic currents. In obtaining Eq. (2.1) we have integrated over the average position of the
two currents and removed the resulting delta function equating the pion’s four-momentum P and
the sum of the two momenta k+ and k− carried by the positron and the electron. Thus, k± must be
assigned values conserving energy and momentum.

π0Jµ(~v, v0)

e−

e+

Jµ(~u, u0)

γµ

γν

π0Jµ(~v, v0)

e−

e+

Jµ(~u, u0)

γµ

γν

e−

e+ Aµ(−w
2 )

γµ

γν

e−

e+

Aµ(
w
2 )

γµ

γν

p− P
2

p + P
2

k−

−k+

p− k+

Figure 3: That portion of the π0 → e+e−

decay amplitude represented by the stan-
dard Feynman perturbation theory expres-
sion given in Eq. (2.2). The momentum as-
signments in this figure correspond to those
used in that equation.

Next we observe that the Minkowski-space expression given in Eq. (2.1) for π0→ e+e− decay
can be directly evaluated using lattice QCD if we simply Wick-rotate the w0 contour in that equa-
tion. Instead of integrating along the real axis from −∞ to +∞, we instead choose w0 to follow the
contour w0 = w̃0e−iφ where the real parameter w̃0 continues to vary between −∞ and +∞ but the
angle φ increases from 0 to π/2. To carry out this deformation of the w0 integration contour we
must analytically continue both the Feynman amplitude Lµν(k+,k−,w) and the hadronic Green’s
function.

The dependence of the latter on the complex variable w0 is easily determined by substituting
a sum over intermediate states between the two currents:

〈0|T
{

Jµ(
w
2
)Jν(−

w
2
)
}
|π0〉 = ∑

n

{
θ(w0)〈0|Jµ(

~w
2
,0)|n〉〈n|Jν(−

~w
2
,0)|π0〉e−iw0(En−Mπ/2)

+θ(−w0)〈0|Jν(−
~w
2
,0)|n〉〈n|Jµ(

~w
2
,0)|π0〉e+iw0(En−Mπ/2)

}
. (2.3)

The analytic dependence of the exponential function on w0 permits this change of contour and the
resulting behavior at large w0 changes from oscillatory to exponentially damped with the least-
rapid decrease coming from the two-pion intermediate state with the behavior exp(−3Mπ |w0|/2).
With this change of contour the hadronic Minkowski-space matrix element given in Eq. (2.3) is
now evaluated at imaginary time making it a conventional Euclidean space amplitude that can be
directly evaluated using lattice QCD.

The analytic continuation of the factor L(k−,k+,w)µν requires more discussion since it is
expressed as in integral over the variable p0 in Eq. (2.2) and a naive change of phase for w0 will
cause that integral to diverge. However, as we vary w0 to explore the asymptotic behavior of this
integral in the complex plane we are free to use Cauchy’s theorem to vary the p0 integration contour

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
1
2
8

KL→ µ+µ−and π0→ e+e− Norman H. Christ

in Eq. (2.2) to obtain maintain the convergence of the p0 integration and to obtain the smallest upper
bound on the growth the L(k−,k+,w)µν for large |w0|. The convergence of the p0 integral can be
maintained if, for large |p0|, the phase of p0 is adjusted to cancel that of w0. For large p0 we can
choose the p0 contour so that p0 = p̃0e+iφ where φ is the phase introduced into w0 above.

As indicated in Fig. 4 we cannot make a simple Wick rotation of the p0 contour for small
values of p0 because of the poles at p0 =±Mπ/2∓|~p|(1− iε) in the first and third quadrants. The
resulting non-zero real part of p0 implies that for large Wick-rotated w0, the integral L(k−,k+,w)µν

will grow as e|w0|Mπ/2. However, this growth is canceled by the e−3|w0|Mπ/2 asymptotic behavior of
the hadronic factor so that the w0 integral along the imaginary axis is convergent. This method has
been successfully used to compute Aπ0→e+e− and the results reported in the companion talk [4].

Re(p0)

Im(p0)

−Mπ
2 − |~p| −

√

(~p− ~k+)2 +m2
e

Mπ
2 − |~p|

−Mπ
2 + |~p|

√

(~p− ~k+)2 +m2
e

Mπ
2
+ |~p|

Contour C

Figure 4: The initial (red, horizon-
tal) and final (blue, vertical) p0 con-
tour employed when using Cauchy’s
theorem to deform the p0 contour ap-
pearing Eq. (2.2). Because of the on-
shell pion energy Mπ the p0 singu-
larities ±mπ/2∓ |~p| ± iε can appear
in the first and third quadrants in the
complex p0 plane and prevent a con-
ventional Wick rotation where the p0

contour simply follows the imaginary
axis.

Equations (2.1) and (2.2) describe the π0 → e+e− decay easily without the difficulties asso-
ciated with two-photon states whose energy lies below the π0 mass. Instead these equations give
the correct, complex Minkowski space amplitude amplitude with an imaginary part determined by
the optical theorem and the π0→ γγ decay amplitude. Because of Cauchy’s theorem, our changes
to the w0 and p0 contours do not alter the final result for Aπ0→e+e− and allow us to evaluate this
complex Minkowski-space amplitude using lattice QCD.

3. Two-photon contribution to KL→ µ+µ−

If we attempt to apply this same approach to the more interesting decay KL→ µ+µ−, we find
that the simple rotation of contours that allowed the direct calculation of π0 → e+e− encounters
difficulties. In Fig. 5 we show the three different time orders that occur as one integrates over the
time coordinates of the two E&M currents and the weak Hamiltonian.

Case (A) in Fig. 5 offers no special difficulties. Here the change in strangeness caused by the
action of HW occurs after the two currents have acted and the states that can be produced by the
first current acting on the KL must be more massive that the kaon. Specifically EY ≥ MK +Mπ

where the intermediate state Y entering between the two currents is labeled in diagram (A) of
Fig. 5. Following the same approach used for the π0 → e+e− above, the Wick rotation of the

4
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K0
L

Jµ(v)

µ−

µ+

Jµ(u)

HW (0)

X

Y

(A)

K0
L

Jµ(v)

µ−

µ+

Jµ(u) HW (0)

X

Y

(B)

K0
L

Jµ(v)

µ−

µ+

Jµ(u) HW (0)

X Y

(C)

Figure 5: Diagrams showing the three different time orders for the two hadronic E&M currents and
the weak Hamiltonian which appear in the K0

L → µ+µ− decay amplitude. In each case X and Y
label the possible hadronic intermediate states.

w0 contour gives a convergent Euclidean-time integral that can be evaluated using lattice QCD. In
analogy with the π0→ e+e− case, the Feynman loop integral will introduce a factor which grows
exponentially with increasing w0, behaving as e|w0|MK/2. However, the product of the two E&M
currents contributes a compensating factor e−|w0|(EY−MK/2), making the Euclidean-time w0 integral
convergent as in the π0→ e+e− case.

Case (B) is less favorable with the desired Wick rotation prevented by the apparent exponential
growth of the integrand for large |w0| arising from states X whose energy is less than the kaon
mass. For such a state the exponential growth of the one-loop Feynman integral identified above,
e|w0|MK/2, will not be overcome by the time dependence of the hadronic factor which will behave
as e−|w0|(EX−MK/2). However, we might regulate this e|w0|(MK−EX ) growth by introducing a finite
upper limit for the w0 integral. We can then perform the integral over w0 and explicitly remove the
contribution of those states X with EX < MK to the term arising from upper limit of the w0 integral.

The most important states with EX < MK are two-pion states, possibly with a non-zero spatial
momentum which is quantized by the finite spatial volume in which a lattice calculation would be
performed. It seems likely that this treatment will give a correct contribution to the real part of the
hadronic amplitude in the limit that the spatial volume approaches infinity, as is the case when a
similar procedure is applied when computing ∆MK . However, for this approach to be useful we
need to have theoretical control over the finite volume effects caused by replacing a principal part
integral by a few discrete energy denominators of the form 1/[EX − (MK + p0)/2].

While such a theory has been worked out for the case of ∆MK [5, 6], a similar treatment for
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the present case is not known and may not exist. For case (B) integrals which are present in infi-
nite volume (integrals over the two-pion center-of-mass energy and 3-momentum of the two-pion
center-of-mass) are being represented by a few finite-volume states X when EX ∼MK . Determining
the finite volume correction needed for the imaginary part of this amplitude appears especially chal-
lenging. Case (C) is even more problematic. Now the Wick-rotated w0 integral will not converge
if either EX or EY or both are less than MK . A more powerful approach may be needed.

Perhaps the next process to examine more carefully is the decay KL→ γγ . For this decay the
spatial momentum of each final-state photon must have a magnitude equal to MK/2. This insures
that those states X causing difficulty in cases (B) and (C) must have energy larger than that of the
photon into which they decay, resulting in convergent Euclidean time integrals. The only difficulty
arises from orderings analogous to case (C) with EY ≤ MK which appears to offer no challenges
beyond those already overcome in the calculation of ∆MK .

In this presentation we have discussed some of the difficulties that must be overcome if the
two-photon contribution to the decay process KL → µ+µ− is to be computed using lattice QCD.
Such a calculation would allow the interesting, strangeness changing neutral current decay ampli-
tude of O(G2

F) to be determined from the existing accurate measurement of the KL→ µ+µ− decay
rate. While much remains to be understood before such a calculation becomes practical, the method
proposed to use lattice QCD to calculate the simpler decay π0→ e+e− appears to be a promising
first step. The Wick rotation method introduced here allows the complete complex decay amplitude
to be determined from a straight-forward lattice QCD calculation with finite volume errors that are
exponentially suppressed in the lattice size. This method has the further advantage that it exploits
the covariant Feynman amplitude for that portion of the matrix element which involves only pho-
ton and electron propagators. This offers a substantial simplification over the use of non-covariant
perturbation that is customary in similar applications of lattice QCD.
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