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We present results on the axial, scalar and tensor isovector-couplings of the nucleon from 2+1 fla-
vor lattice QCD with physical light quarks (mπ = 135 MeV) in large spatial volume of (10.8 fm)3.
The calculations are carried out with the PACS10 gauge configurations generated by the PACS
Collaboration with the stout-smeared O(a) improved Wilson fermions and Iwasaki gauge action
at β = 1.82 corresponding to the lattice spacing of 0.084 fm. For the renormalization, we use the
RI/SMOM scheme, a variant of Rome-Southampton RI/MOM scheme with reduced systematic
errors, as the intermediate scheme. We then evaluate our final results in the MS scheme at a scale
of 2 GeV, using the continuum perturbation theory for the matching scale of RI/SMOM and MS
schemes and running.
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1. Introduction

Future and current precision β -decay measurements with cold and ultracold neutrons provide
us an opportunity to study the sensitivity of the nucleon isovector matrix elements to new physics
beyond the standard model (BSM). The neutron life-time puzzle associated with the nucleon axial
coupling (gA) is one of such examples [1]. The nucleon scalar and tensor couplings (gS and gT )
should play important roles to constrain the limit of non-standard interactions mediated by undis-
covered gauge bosons in the scalar and tensor channels if the BSM contributions are present [2].
Especially the nucleon scalar isovector-coupling, which is related to the mass difference between
the light quarks, is a phenomenologically interesting quantity [3]. On the other hand, the tensor
coupling has the same transformation properties under P and T discrete symmetries as the electric
dipole moment (EDM) current. Thus the nucleon tensor isovector-coupling is also an important
information regarding the size of neutron EDM.

Although the vector and axial isovector-couplings (gV and gA) are well measured in both ex-
periment and lattice QCD, the scalar and tensor isovector-couplings are so far not accessible in
experiment. On the other hand, lattice determination of the scalar and tensor isovector-couplings
have recently performed by several groups [4, 5, 6]. Further comprehensive studies of the nucleon
isovector-couplings including gS and gT as well as gV and gA are still needed.

2. Method

In general the isovector nucleon couplings gO are expressed by the neutron-proton transition
matrix element with the quark charged (off-diagonal) currents

⟨p(p,s)|ūΓOd|n(p,s)⟩= gOup(p,s)ΓOun(p,s), (2.1)

where ΓO is a Dirac matrix appropriate for the channel O (O =V,A,S,P,T ). Considering the SU(2)
Lie algebra associated with isospin, the isovector nucleon matrix element can be rewritten by the
proton matrix element of the diagonal isospin current

⟨p|uΓOd|n⟩= ⟨p|uΓOu|p⟩−⟨p|dΓOd|p⟩ (2.2)

in the isospin limit [7]. Therefore, the isovector couplings are related with the flavor diagonal
couplings g f

O = ⟨p| f ΓO f |p⟩ with f = u or d as gisovector
O = gu

O −gd
O.

In order to calculate the nucleon matrix element in lattice QCD simulations, we compute the
three-point correlation functions consisting of the smeared proton source and sink operators (N and
N) with a given bilinear operator J O = uΓOu−dΓOd

CP
O (t,p′,p) =

1
4

Tr
{
P⟨N(tsink,p′)J O(t,q)N(tsrc,−p)⟩

}
, (2.3)

where q = p−p′ represents the three dimensional momentum transfer. A well-known procedure
for determining the couplings is to calculate the following ratio fo the three-point and two-point
correlation functions with zero momentum transfer

CP
O (t,0,0)

C2pt(tsink − tsrc)
→ gbare

O for tsink ≫ t ≫ tsrc (2.4)
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where C2pt(tsink − tsrc) represents the proton two-point correlation function with the same smeared
source and sink at the rest frame. Recall that the ratio vanishes unless ΓO = 1(S), γ4(V ), γiγ5(A),
and σi j(T ) with i, j = 1,2,3 [7]. The nonvanishing ratio gives an asymptotic plateau corresponding
to the bare value of the coupling gO relevant for the O channel. In this study we focus on the axial
(A), scalar (S) and tensor (T ) couplings.

3. Simulation Details

We mainly used the PACS10 configurations [8] generated by the PACS Collaboration with
the stout-smeared O(a) improved Wilson-clover fermions and Iwasaki gauge action. Two lattice
sizes are used for this study, 1284 and 644, corresponding to linear spatial extents of approximately
10 and 5 fm (See also Tab. 1). The smaller volume ensembles are used only for computing the
renormalization constant which is known to be less sensitive to the finite volume effects, while our
main results of the nucleon matrix elements are obtained from the larger volume ensembles. The
simulation details are summarized in Tab. 1.

L3 ×T a−1[GeV] κs κl Mπ [GeV]
1283 ×128 2.3 0.124902 0.126117 0.135 [9]
643 ×64 2.3 0.124902 0.126117 0.139 [8]

Table 1: Simulation Details

4. Preliminary Results

4.1 Updates from the previous results

In our previous study [9], we had computed nucleon two-point and three-point correlation
functions using the exponentially smeared source and sink with four different source-sink separa-
tions (tsep = tsink − tsrc). Significant reduction of the computational cost is achieved by employing
the all-mode-averaging (AMA) method optimized by the delation technique [10]. We then ob-
tained five basic quantities of the nucleon from nucleon form factors: the electric and magnetic
root-mean-square (RMS) radii, the magnetic moment, the axial isovector-coupling (gA), and the
axial RMS radius, with good statistical precisions with within 2-5%. It is worth mentioning that
the 2% precision of gA whose value is fairly consistent with the experimental one, was achieved [9].
At present we are pursuing one percent-level precision on gA. Meanwhile, we focus on an accurate
determination of the scalar and tensor isovector-couplings (gS and gT ).

In this study, the nucleon three-point correlation functions are calculated using the sequential
source method with a fixed source [7]. We adopt the source-sink separation of tsep/a = 13 and
16 with the gauge-covariant Gauss-smeared source and sink. The number of measurements used
in this study is listed in Tab. 2 together with our previous study performed with the exponentially
smeared operators.

In the left panel of Fig. 1, we plot the ratio of the relevant three-point and two-point correlation
functions for the axial channel with tsep/a = 16 as a function of the current insertion time t as a

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
1
3
2

Nucleon isovector couplings from 2+1 flavor lattice QCD at the physical point Natsuki Tsukamotoa

Smearing-type tsep/a Nconf # of meas. Smearing-type tsep/a Nconf # of meas.
Exp. 10 20 2560 Gauss 13 16 1024

12 20 5120 16 19 7296
14 20 6400
16 20 10240

Table 2: The total number of measurements at each source-sink separation with two smearing types.

typical example. The t-dependence of the ratio is mild in both smearing types of the exponential
(Exp.) and Gaussian (Gauss) forms. The local axial current is renormalized with the value of
ZA = 0.9650(68)(95) obtained with the Schrödinger functional (SF) scheme [11]. As shown in
Fig. 1, the statistical uncertainties on results from the Gauss smeared operators are almost twice
smaller than that of the exponentially smeared operators at 6 ≤ t/a ≤ 9 (gray shaded band), though
the total number of the former measurements are about 1.5 times smaller than the latter. We found
that for the same statistical accuracy, the total computational cost of the Gauss smeared operators
is roughly 5-6 times lower than the case of the exponentially smeared operator.

We next show the tsep dependence of the renormalized axial coupling in both cases of the
exponential and Gaussian smearings in the right panel of Fig. 1. As one can easily see, when
the Gauss smeared operators are adopted, more precise determination of gA is achieved even with
tsep/a = 16, which is a maximum size of sink-source separation in our previous work. This figure
shows that our results of the renormalized gA in all cases of tsep agree with the experimental value,
1.2724(23) (denoted as a blue line). We do not observe a significant tsep dependence. We also expect
that our final result of gA could eventually reach one percent-level precision from the combined
value with tsep/a = {13,16} even at the physical point.
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Figure 1: Comparing the results obtained from two types of the smearing: The black circles and blue squares
present results obtained from the exponential and Gaussian smearings respectively. The gray band in the
right panel on the figure represents the combined value with tsep/a = {12,14,16} using the exponentially
smeared operators, that was quoted in Ref. [9].

4.2 Scalar and tensor couplings

In Fig. 2, we show the results for the bare values of gS and gT , which are obtained with several
different source-sink separations. The tsep dependence appears slightly for the case of tsep/a < 12
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Figure 2: Bare couplings for the scalar (left) and tensor (right) channels as a function of tsep.

in the tensor channel, while there is no tsep-dependence in the scalar channel albeit with rather large
statistical errors. The systematic uncertainties stemming from the excited state contamination are
enough small for the cases of tsep/a ≥ 13 within the statistical errors.

In order to be compared with the experiment values or other lattice results, the bare cou-
plings gS and gT should be renormalized with the renormalization factors ZS and ZT in the certain
scheme. As for the scalar and tensor channels, we first renormalize the scalar and tensor couplings
nonperturbatively using the Rome-Southampton method, where the regularization independent mo-
mentum subtraction scheme is adopted. The renormalization factors determined in the RI/MOM
subtraction scheme are converted to the MS scheme and then evolved to the scale of 2 GeV using
the perturbation theory.

The following procedure is performed to evaluate the renormalization factors in this study:

1. Obtain the renormalization factors ZS/ZV (A) and ZT/ZV (A) in the RI/SMOM scheme [12] at
certain scale of µ0. Using the value of ZV (ZA) obtained in the SF scheme [11], we can
determine the renormalization factors ZRI

O (µ0) (O = S and T ) in the fully nonperturbative
manner.

2. Convert ZRI
O into the MS scheme at the matching scale µ0 and then evolve the renormalization

factors ZMS
O (µ0) to the scale of 2 GeV with a help of the continuum two-loop perturbation

theory [13]. Here, in principle, ZMS
O (µ0;2 GeV) are supposed to be insensitive to the choice

of the matching scale µ0 within a certain range.

3. Eliminate the residual dependence on the choice of the matching scale µ0 appearing in the
value of ZMS

O (µ0;2 GeV) due to the presence of lattice artifacts at higher µ0 and truncation
of the perturbative series at lower µ0.

In Fig. 3, we show the value of ZMS
O (µ0;2 GeV) for the scalar (left panel) and tensor (right

panel) as a function of µ2
0 . The residual dependence of the choice of the matching scale µ0 appears

more largely in the scalar channel than the tensor channel where the residual dependence is not
significant. In order to eliminate the residual µ0 dependence, we used the following functional
form [4, 5]:

ZMS
O (µ0;2 GeV) =

c−1

µ2
0
+ c0 + c1µ2

0 + c2µ0
4 (4.1)
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with c0 being the µ0-independent value of ZMS
O (2 GeV). A pole term in Eq. (4.1) should be origi-

nated from the existence of dimension two condensate in the Landau gauge as the nonperturbative
effect [14]. The fit results with the form (4.1) are represented by gray shaded curves in Fig. 3. Blue
dashed curves are given after the pole contribution is subtracted. The constant term c0 can be read
off from the blue dashed curve as y-axis intercept in each panel.
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Figure 3: The matching scale dependence of ZMS
S (2 GeV) (left) and ZMS

T (2 GeV) (right).

Combining the renormalization factors with the bare couplings, we finally obtain the renor-
malized values of gS and gT in the MS scheme at the scale of 2 GeV, which are consistent with the
FLAG average values [15] as shown in the left and right panels of Fig. 4 for gS and gT respectively.
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Figure 4: Renormalized scalar (left) and tensor (right) couplings in the MS scheme at the scale of 2 GeV.

5. Summary

We have calculated the axial, scalar and tensor isovector-couplings of the nucleon using the
PACS10 gauge configurations. To improve the statistical accuracy and reduce the computation
time from our previous study, we use the Gauss-smeared operators for calculating the relevant
three-point and two-point correlation functions of the proton. We found that the Gauss-smeared
operators efficiently reduce the statistical uncertainties on the ratio of the three-point and two-point
correlation functions in comparison to the exponentially smeared operators adopted in our previous
study. Indeed, the same level of precision on the determination of gA with the large source-sink
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separation tsep/a = 16 was easily achieved with the roughly 5-6 times lower computational cost
than the previous calculations. Combining the results with tsep/a = 13,16, we can expect that the
usage of the Gauss-smeared operator enables to us to reach one percent-level precision for our final
result of gA .

We also calculated the isovector couplings in the scalar and tensor channels with different
source-sink separations and found that the systematic uncertainties stemming from the excited
state contamination are well under control for gS and gT as well as gA in our study. We also
nonperturbatively estimated the renormalization factors for the scalar and tensor current using the
RI/SMOM scheme. We finally determine the renormalized value of gS and gT in conversion to the
MS scheme. Our results are consistent with the FLAG average values [15].
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