Radiative leptonic decays on the lattice

Christopher Kanea, Christoph Lehnerb,c, Stefan Meinela,d, Amarjit Sonic

aDepartment of Physics, University of Arizona, Tucson, AZ 85721, USA
bDepartment of Physics, University of Regensburg, 93040 Regensburg, Germany
cPhysics Department, Brookhaven National Laboratory, Upton, NY 11973, USA
dRIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

E-mail: smeinel@email.arizona.edu

Adding a hard photon to the final state of a leptonic pseudoscalar-meson decay lifts the helicity suppression and can provide sensitivity to a larger set of operators in the weak effective Hamiltonian. Furthermore, radiative leptonic B decays at high photon energy are well suited to constrain the first inverse moment of the B-meson light-cone distribution amplitude, an important parameter in the theory of nonleptonic B decays. We demonstrate that the calculation of radiative leptonic decays is possible using Euclidean lattice QCD, and present preliminary numerical results for $D_s^+ \rightarrow \ell^+ \nu \gamma$ and $K^- \rightarrow \ell^- \bar{\nu} \gamma$.
1. Introduction

Radiative leptonic decays of pseudoscalar mesons probe both the weak interaction and the hadronic structure in useful ways. Adding a sufficiently energetic photon to the final state can actually increase the branching fraction [2], as it removes the helicity suppression. Perhaps the most interesting example is $B^- \rightarrow \ell^- \bar{\nu} \gamma$, shown in Fig. 1 (left). For large E_γ, this process is the cleanest probe of the first inverse moment of the B-meson light-cone distribution amplitude, $1/\lambda_B = \int_0^1 \frac{d \omega}{\omega} C_{B}(\omega)$, an important input in QCD-factorization predictions for nonleptonic B decays that is presently poorly determined [3, 4, 5, 6, 7, 8, 9]. A recent search for this decay by Belle gave an upper limit $\mathcal{B}(B^- \rightarrow \ell^- \bar{\nu} \gamma, E_\gamma > 1$ GeV $) < 3 \times 10^{-6}$, close to the Standard-Model expectation [10]. Lattice QCD results for the $B^- \rightarrow \ell^- \bar{\nu} \gamma$ form factors could be used to constrain λ_B. Also very interesting are the flavor-changing neutral-current decays $B^0 \rightarrow \ell^+ \ell^- \gamma$ and $B_s \rightarrow \ell^+ \ell^- \gamma$ (shown in Fig. 1, right). While the purely leptonic decays are sensitive to $C_{10,S,P}$ only, the radiative leptonic decays probe all Wilson coefficients in the weak effective Hamiltonian, including C_9, in which global fits of experimental results for other $b \rightarrow s \ell^+ \ell^-$ decays indicate a deviation from the Standard Model that violates lepton flavor universality (LFU) [1]. Since the radiative leptonic decays are not helicity-suppressed, they are well-suited for testing LFU with light leptons [11, 12]. For the charmed-meson radiative leptonic decays $D^+ \rightarrow e^+ \nu \gamma$ and $D^+_s \rightarrow e^+ \nu \gamma$, the BESIII collaboration has reported upper limits on the branching fractions with $E_\gamma > 10$ MeV of 3×10^{-5} and 1.3×10^{-4}, respectively [13, 14]. Finally, in contrast to the heavy-meson decays, there are already precise measurements of the differential branching fractions of $K^- \rightarrow e^- \nu \gamma$, $K^- \rightarrow \mu^- \nu \gamma$, $\pi^- \rightarrow e^- \nu \gamma$, and $\pi^- \rightarrow \mu^- \nu \gamma$, as reviewed in Ref. [15]. These decay modes can therefore be used to test the lattice QCD methods.

In the following, we show how radiative leptonic decays can be calculated on a Euclidean lattice, and we present early numerical results. One of us previously reported on this project at the Lattice 2018 conference [16]. At Lattice 2019, radiative leptonic decays were also discussed by G. Martinelli [17].

2. Hadronic tensor and form factors

To define the form factors for charged-current radiative leptonic decays of pseudoscalar mesons, we use the notation for $B^- \rightarrow \ell^- \bar{\nu} \gamma$. The quark electromagnetic and weak currents are given by $J_\mu = \sum_q e_q \bar{q} \gamma_\mu q$ and $J_\mu^{\text{weak}} = \bar{u} \gamma_\mu (1 - \gamma_5) b$. The decay amplitude depends on the hadronic tensor,
which is defined as

$$T_{\mu\nu} = -i \int d^4x \, e^{ip_{\gamma} x} \langle 0 | T (J_{\mu}(x) J_{\nu}^{\text{weak}}(0)) | B^{-}(p_B) \rangle$$ \hspace{1cm} (2.1)$$

in Minkowski space. Throughout this work, we assume that the photon is real, i.e., $p_{\gamma}^2 = 0$. The hadronic tensor can be decomposed as [7]

$$T_{\mu\nu} = \epsilon_{\mu\nu\tau\rho} p_B^\tau v^\rho F_{\tau\rho} + i[-g_{\mu\nu}(p_B \cdot v) + v_{\mu}(p_B)] F_A - i \frac{V_{\mu\nu}}{p_B \cdot v} m_B f_B + (p_B)_{\mu\tau} \epsilon_{\tau\rho\nu} v^\rho,$$ \hspace{1cm} (2.2)$$

where $p_B = m_B v$ and the $(p_B)_{\mu\tau}$-terms will disappear when contracting with the photon polarization vector. The form factors $F_{\tau\rho}$ and F_A are functions of the photon energy in the B-meson rest frame, $E_{\gamma}^{(0)} = p_B \cdot v = (m_B^2 - q^2)/(2m_B)$. Also appearing in Eq. (2.2) is the B-meson decay constant f_B.

To prepare for the discussion in the next section, it is useful to write down the spectral representation of $T_{\mu\nu}$ in Minkowski space for the two different time orderings of the currents. By inserting complete sets of energy/momentum eigenstates and performing the time integrals, we find

$$T_{\mu\nu}^- = -i \int_{-\infty}^0 dt \, e^{iE_{\gamma} t} \int d^3x \, e^{-ip_{\gamma} x} \langle 0 | J_{\mu}(t, x) J_{\nu}^{\text{weak}}(0) | B^{-}(p_B) \rangle$$

\hspace{1cm} (2.3)$$

and

$$T_{\mu\nu}^+ = -i \int_0^{\infty} dt \, e^{iE_{\gamma} t} \int d^3x \, e^{-ip_{\gamma} x} \langle 0 | J_{\mu}(t, x) J_{\nu}^{\text{weak}}(0) | B^{-}(p_B) \rangle$$

\hspace{1cm} (2.4)$$

(in infinite volume, the sums over n and m include integrals over the continuous spectrum of multi-particle states).

3. Extracting the hadronic tensor from a Euclidean three-point function

In this section, we show that $T_{\mu\nu}$ can be extracted from the Euclidean three-point function

$$C_{\mu\nu}(t, t_B) = \int d^3x \int d^3y \, e^{-ip_{\gamma} x} e^{ip_{\gamma} y} \langle J_{\mu}(t, x) J_{\nu}^{\text{weak}}(0, 0) \phi^{\gamma \tau}(t_B, y) \rangle,$$ \hspace{1cm} (3.1)$$

where $\phi_B \sim \bar{u} \gamma_\tau b$ is an interpolating field for the B meson, and t, t_B now denote the Euclidean time. We define the integrals

$$I_{\mu\nu}^<(t_B, T) = \int_{-T}^0 dt \, e^{E_{\gamma} t} C_{\mu\nu}(t, t_B), \hspace{1cm} I_{\mu\nu}^>(t_B, T) = \int_0^T dt \, e^{E_{\gamma} t} C_{\mu\nu}(t, t_B),$$ \hspace{1cm} (3.2)$$

with a finite integration range T. Here we take t_B to be large and negative (with $t_B < -T$), such that ground-state saturation is achieved for the B meson. Inserting again complete sets of energy/momentum eigenstates, we find, for the first time ordering,

$$I_{\mu\nu}^<(t_B, T) = \langle B(p_B) | \phi^{\gamma \tau}_B(0) | 0 \rangle \frac{1}{2E_B} e^{E_{\gamma} t_B}$$

\hspace{1cm} (3.3)$$

\times \sum_n \frac{1}{2E_n(p_B - p_{\gamma})} \frac{\langle 0 | J_{\nu}^{\text{weak}}(0) | n(p_B - p_{\gamma}) \rangle \langle n(p_B - p_{\gamma}) | J_{\mu}(0) | B(p_B) \rangle}{E_{\gamma} + E_n(p_B - p_{\gamma}) - E_B} \times \left(1 - e^{-(E_{\gamma} + E_n(p_B - p_{\gamma}) - E_B)T} \right).
The sum over states in Eq. (3.3) differs from the sum in Eq. (2.3) by the factor in the last line. However, the exponential \(e^{-(E_T + E_{m,p_T}) - E_B T} \) will vanish for large \(T \) if \(E_T + E_{m,p_T} > E_B \). Because the states \(|n(p_B - p_\gamma)|\) have the same quark-flavor quantum numbers as the \(B \) meson, we have \(E_{m,p_T} \geq E_B(p_B - p_\gamma) = \sqrt{m_B^2 + (p_B - p_\gamma)^2} \). Thus, we need \(\sqrt{p_T^2 + m_B^2 + (p_B - p_\gamma)^2} > \sqrt{m_B^2 + p_B^2} \). This is in fact always true if \(p_\gamma \neq 0 \).

For the other time ordering, we find
\[
I_{\mu\nu}(t_B, T) = -\langle B(p_B)|\phi_B^\dagger(0)|0 \rangle \frac{1}{2E_B} e^{E_B t_B} \times \sum_m \frac{1}{2E_{m,p_T}} \langle 0|J_\mu(0)|m(p_T)\rangle \langle m(p_T)|J^{\text{weak}}_\nu(0)|B(p_B)\rangle \frac{1}{E_T - E_{m,p_T}} \left(1 - e^{-(E_T - E_{m,p_T})T}\right). \tag{3.4}
\]

The unwanted exponential \(e^{(E_T - E_{m,p_T})T} \) in the last line goes to zero for large \(T \) if \(E_{m,p_T} > E_T \). Because the states \(|m(p_T)\rangle\) are hadronic and have nonzero masses, their energies are larger than the energy of a photon with the same spatial momentum, showing that this condition is also always satisfied.

In summary, for \(p_\gamma \neq 0 \),
\[
T_{\mu\nu} = -\lim_{T \to -\infty} \lim_{t_B \to -\infty} \frac{2E_B e^{-E_B t_B}}{\langle B(p_B)|\phi_B^\dagger(0)|0 \rangle} I_{\mu\nu}(t_B, T), \tag{3.5}
\]
where \(I_{\mu\nu} \) is the integral from \(-T\) to \(T \). The energy \(E_B \) and the overlap factor \(\langle B(p_B)|\phi_B^\dagger(0)|0 \rangle \) can be obtained from the two-point function \(\int d^3x e^{-ip_0 x} \langle \phi_B(t, x) \phi_B^\dagger(0) \rangle \).

Note that similar nonlocal matrix elements appear in processes with two photons, whose lattice calculation has been discussed, for example, in Refs. [18, 19, 20].

4. Preliminary numerical results

In this section, we present some early numerical results for the \(D_s^+ \to \ell^- \nu \gamma \) and \(K^- \to \ell^- \nu \gamma \) form factors. These results are from only 25 configurations of the “24I” RBC/UKQCD ensemble.
Radiative leptonic decays on the lattice

Stefan Meinel

Figure 3: The $D_s^+ \to \ell^+ \nu \gamma$ and $K^- \to \ell^- \bar{\nu} \gamma$ form factors at $p_T = (0, 0, 1) \frac{2\pi}{T}$ as a function of the summation range T, for two different meson-field insertion times.

Figure 4: The D_s and K decay constants extracted from $T_{\mu\nu}$ at $p_T = (0, 0, 1) \frac{2\pi}{T}$, as a function of the summation range T, for two different meson-field insertion times. For the D_s, the horizontal line shows the physical value from Ref. [21]. For the K, the horizontal line shows the value computed on the same ensemble with the standard method in Ref. [22].

[22] with $2+1$ flavors of domain-wall fermions and the Iwasaki gauge action, with $a^{-1} = 1.785(5)$ GeV and $m_s = 340(1)$ MeV. For the light and strange valence quarks, we use the same domain-wall action as in Ref. [22]. The valence charm quark is implemented with a Möbius domain-wall action with stout-smeared gauge links ($N = 3$, $\rho = 0.1$), $L_5/a = 12$, $aM_5 = 1.0$, $am_f = 0.6$ [23], which approximately corresponds to the physical charm-quark mass. We use local currents with “mostly nonperturbative” renormalization. Gaussian smearing is performed for the lighter quark in the meson interpolating field. We start with a Z_2 random-wall source at the time slice of the weak current (denoted as time “0” here) and perform sequential inversions through the meson in-
terpolating field; disconnected diagrams are presently neglected. All-mode averaging [24] with 16 sloppy and 1 exact samples per configuration is employed; the 16 sloppy samples correspond to 16 different starting time slices. Our initial calculations used $p_{K/D_s} = 0$ and $p_T^2 \in \{1, 2, 3, 4, 5\} \left(\frac{2\pi}{T}\right)^2$.

Figure 2 shows examples of the $D_s^+ \to \ell^+ \nu \gamma$ form factors as a function of the photon energy. The results shown here were obtained with $T/a = 8$ and $t_{K/D_s}/a = -12$. Only the statistical uncertainties are given.

5. Conclusions and Outlook

We have shown that the form factors describing radiative leptonic decays can be calculated on the lattice; even though they involve a nonlocal matrix element, the use of imaginary time poses no difficulty in this case. The early results shown here for $D_s^+ \to \ell^+ \nu \gamma$ and $K^- \to \ell^- \bar{\nu} \gamma$ cover photon energies from approximately 0.5 to 1 GeV. For $K^- \to \ell^- \bar{\nu} \gamma$ we need to extrapolate in the mass. We are also considering calculations directly at the physical b-quark mass using the “relativistic heavy-quark action” [25], but, because this action is only on-shell improved, additional steps are likely needed to remove unphysical behavior occurring when the electromagnetic and weak currents get close to each other.

Acknowledgments: We thank the RBC and UKQCD Collaborations for providing the gauge-field configurations. C.K. and S.M. are supported by the US DOE, Office of Science, Office of HEP under award number DE-SC0009913. S.M. is also supported by the RIKEN BNL Research Center. A.S. and C.L. are supported in part by US DOE Contract No. DESC0012704(BNL). During a part of this work, C.L. was also supported by a DOE Office of Science Early Career Award. This work used resources at TACC that are part of XSEDE, supported by NSF grant number ACI-1548562.