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We have initiated a program to compute the Compton amplitude from lattice QCD with the

Feynman-Hellman method. This amplitude is related to the structure function via a Fredholm

integral equation of the first kind. It is known that these types of equations are inherently ill–

posed - they are, e.g., extremely sensitive to perturbations of the system. We discuss two methods

which are candidates to handle these problems: the model free inversion based on singular value

decomposition and one Bayesian type approach. We apply the Bayesian method to currently

available lattice data for the Compton amplitude.
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1. Introduction

The determination of the hadronic structure from first principles belongs to the key investi-

gation topics in lattice QCD. Central to our understanding of hadron structure are the structure

functions which describe the distribution of quarks and gluons inside hadrons. In the last years

some promising approaches have been proposed, among them the calculation of the quasi particle

distribution functions (for a review see [1]). Our group has initiated a program to compute the

structure functions from the forward Compton amplitude of the nucleon [2, 3]. A central motiva-

tion for this is to overcome the issues of renormalization, operator mixing and the restriction to

light-cone operators.

The starting point is the forward Compton amplitude of the nucleon [4],

Tµν(p,q) = ρλλ ′

∫

d4xeiq·x〈p,λ ′|T Jµ(x)Jν(0)|p,λ 〉 , (1.1)

which involves the time ordered product of electromagnetic currents sandwiched between nucleon

states of momentum p and polarization λ , where q is the momentum of the virtual photon and ρ is

the polarization density matrix. In view of our investigation below we consider only the unpolarized

structure functions. In the unphysical region (|p ·q|< q2/2) the relation of Tµν(p,q) to the structure

functions F1(x,q
2),F2(x,q

2) is given by [4]

Tµν(p,q) =

(

δµν −
qµqν

q2

)

4ω

∫ 1

0
dx

ωx

1− (ωx)2
F1(x,q

2)

+

(

pµ −
p ·q
q2

qµ

)(

pν −
p ·q
q2

qν

)

8ω

2p ·q

∫ 1

0
dx

1

1− (ωx)2
F2(x,q

2) , (1.2)

with ω = 2p ·q/q2, discarding the subtraction term [2]. To simplify the numerical calculation, we

may choose µ = ν = 3 and p3 = q3 = q4 = 0. We then have

T33(p,q) = 4ω

∫ 1

0
dx

ωx

1− (ωx)2
F1(x,q

2)≡
∫ 1

0
dxK(x,ω)F1(x,q

2) . (1.3)

The matrix element T33(p,q) can be computed most efficiently by a simple extension of the Feynman–

Hellmann method [2, 5].

Performing a Taylor expansion of (1.3) leads to a simple relation between the moments t j =
∫ 1

0 dxx j F1(x) of the structure function and the ω–dependent Compton amplitude

T33(ω) = 4
(

ω2 t1 +ω4 t3 + · · ·+ω2M t2M−1 + . . .
)

. (1.4)

From these we then determine the moments of the parton distributions µ j from t j ∼ µ j/2 neglecting

logs and terms O(1/q2).

2. Problems and solutions of the Fredholm integral equation

Formula (1.3) is the basic relation for our investigation. It tells us how to extract the structure

function F1(x,q
2) given that we have available lattice data for the Compton amplitude T33(p,q).

Unfortunately, it is a Fredholm integral equation of the first kind. Those equations are known to be
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ill–posed. E.g., they are extremely sensitive to very small perturbations of the data [6] – in our case

to the lattice results of T33(p,q). Additionally, the solutions are not guaranteed to be unique. There

is no general solution method available. If one finds a successful numerical strategy at all it depends

always on the specific kernel K. Therefore, a careful study of possible approaches is needed. An

analogous problem arises in the reconstruction of Ioffe time pseudo particle distribution functions

(pdf) and was investigated in great detail in [7].

In order to test some possible numerical methods we generate mock data for the Compton

amplitude. As an example we choose a valence type up quark distribution

x pref
uv
(x) = 5.107x0.8 (1− x)3 (2.1)

chosen to satisfy the momentum sum rule

∫ 1

0
dxx pref

uv
(x) = 1/3 . (2.2)

This function is then used to generate the T33 data via (1.3) and to compare with the results of

our tested inversion algorithms.

The numerical inversion requires a discretization of (1.3)

T33(ωi) =
N

∑
j=1

K(x j,ωi) p(x j)↔ T33,i =
N

∑
j=1

K ji p j , i = 1 . . .M , (2.3)

where in general we have N 6= M.

One basic method to solve (2.3) for the p j is the singular value decomposition (SVD) [8]. It

has the advantage that one does not need to make any further input assumptions about the expected

form of the wanted p(x). On the other hand there is a certain freedom in omitting small singular

values. Additionally, using our kernel K(x,ω) (1.3) we have cancellations of very large numbers

which increases with the number of included singular values. This demands very precise lattice data

in order to get meaningful results. The result of the inversion x pSVD
uv

(x) is shown in the left panel of
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Figure 1: Left: The pdf as obtained from the SVD. The red curve is x pref
uv
(x) (2.1). The blue

shadowed area shows the variation of the result x pSVD
uv

(x) due to a ±10% variation of T33. Right:

The pdf from the BMC approach. The red curve is again the input (2.1). The shadowed area is the

68% quantile.
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Fig. 1 for N = 50, M = 10 and 0 < ω < 1. One recognizes a trend around the the input distribution

with some small oscillations . The integral using the mean value is
∫ 1

0 dxx pSVD
uv

(x)≈ 0.33 .

An alternative approach uses some prior model information concerning the distribution and

tries to refine it according to the available data. It belongs to the class of Bayesian methods. One

variant has been discussed in detail in [7]. We follow a slightly different procedure here (see

also [3]). Our model assumption is the general form of a valence quark type distribution

pval(x,a,b,c) =
axb (1− x)c Γ(b+ c+3)

Γ(b+2)Γ(c+1)
. (2.4)

We can determine the Compton amplitude from (1.3) analytically (for ω < 1)

T val
33 (ω) = 2−b−c−1

√
π aω2 Γ(b+ c+3)×

3F̃2

(

1,
b+2

2
,
b+3

2
;
1

2
(b+ c+3),

1

2
(b+ c+4);ω2

)

(2.5)

= c1(a,b,c)ω2 + c3(a,b,c)ω4 + c5(a,b,c)ω6 + . . . , (2.6)

where 3F̃2 is a regularized hypergeometric function. The power expansion of T val
33 (ω) is given in

(2.6). We proceed by first generating NMC Monte Carlo sets of model parameters {a,b,c}k=1,...,NMC
.

With these sets the quadratic deviations χ2
k

χ2
k = ∑

n, j

(

T33,n −T val
33,(k)(ωn)

)

C−1
n j

(

T33, j −T val
33,(k)(ω j)

)

(2.7)

are computed. T33,n are the data for ωn, whereas T val
33,(k)(ωn) is (2.5) calculated for one triple

{a,b,c}k at ωn. C−1
n j is the inverse covariance matrix of the data. The set χ2

k is used to make a

weighted random choice out of the total set {a,b,c}k by the likelihood exp(−χ2/2). This consti-

tutes our sample parameter set from which we compute the means and the quantiles. Also in this

case the model input is crucial: the final values are inside the MC sets and the χ2
k should contain

reasonable small minimal values. We call this method a Bayesian Monte Carlo (BMC) approach.

The resulting distribution is shown in the right panel of Fig. 1. The initial values of the parameters

are selected uniformly distributed around some suitable values. An analogous procedure can be

used to determine the moments via relation (1.4). In this case the moments t j play the role of the

parameters and are obtained directly from this approach.

Summarizing the SVD and the BMC approaches we favor the latter, because we recognize in

the SVD solution oscillations around the exact result although we use ideal mock data. For real

lattice data which are far more scattered and which often have more significant uncertainties the

SVD inversion gives very unstable results.

3. First results from lattice data

Now we investigate these methods with our latest lattice data for the nucleon Compton am-

plitude for the connected part of the combination u− d. We use 323 × 64(β = 5.5) lattices at

the SU(3)–flavour symmetric point (κl = κs) and Mπ ≈ 470 GeV. In this paper only data for

q2 = 2.7, 3.5, 4.6 GeV2 are included. They are shown in the left panel of Fig. 2.
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Figure 2: Left: T u−d
33 lattice data in the range 0<ω < 1 for the three q2 values used for the analysis.

Right: Result for (3.1) together with the data for q2 = 2.7 GeV2.

As a first step we determine the first moments using (1.4) as the defining relation. In this paper

we restrict ourselves to order ω12. In order to get information about the q2–dependence we apply

our BMC procedure to each of the three data sets mentioned above. We compute the χ2
k values

from (2.7), now with

T val
33,(k)(ωn) = 4

6

∑
j=1

t
(k)
2 j−1 ω2 j

n . (3.1)

We select NMC sets by sampling {a,b,c}k uniformly from intervals suggested by phenomenology

and determine the moments t(a,b,c)
(k)
i according to their valence quark beavior. (A random se-

lection with t
(k)
1 ≥ t

(k)
3 ≥ ·· · ≥ 0 as discussed in [3] leads to very similar results.) We generate

100,000 MC data sets and from that we select a subset of 500 samples weighted by the likelihood

exp(−χ2/2). From this subset we compute the ti. The resulting Compton amplitude is given in

the right panel of Fig. 2 for q2 = 2.7 GeV2 where we observe a reasonable agreement with the

data. The moments themselves are presented in Fig. 3. They show their expected behavior with

increasing order. For the first moment we observe a slight dependence on q2.

In the same spirit we try to obtain the complete particle distribution function. As data we use
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Figure 3: Left: The first moments for q2 = 2.7 GeV2. The error bars are the quantiles encompassing

68% of the data. Right: The first moment for q2 = 2.7,3.5 and 4.6 GeV2.
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Figure 4: Left: The Compton amplitude (2.6) with parameters obtained with BMC together with

the data. Right: The resulting valence type distribution function. The shaded area is the 68%

quantile.

the subset with q2 = 2.7 GeV2. Concerning the priors, we are guided by the success of the moments

determination above. We sample the first moment uniformly out of the interval [0 . . .1] and let the

BMC method compute it from to the lattice data. This is supported by our model ansatz (2.4) since

〈x〉=
∫ 1

0
dx x pval(x,a,b,c) = a . (3.2)

For the parameters b and c we choose input intervals suggested by phenomenology. Other prior

schemes will be investigated in a forthcoming paper.

We find using the mean curve and its quantile borders
∫ 1

0 dx x pres
u−d(x) = 0.58+25

−26 , consistent

with the first moment given in Fig. 3. Additionally, inserting the resulting mean values of the

parameters in (2.6) we find c1 ≈ 1.09 – also compatible with the moments. The results are shown

in Fig. 4. One recognizes a strong similarity of the left panel in Fig. 4 with the right panel of Fig.

2 which proves the consistency of both approaches. In order to demonstrate the effect of the BMC

procedure we show in Fig. 5 the change of the parameters from the uniformly input values (blue)

to the final values (red). The histogram in the right panel demonstrates the transition from uniform

input to the peaked distribution triggered by the χ2
k values. One recognizes that the procedure does

not influence very much the values of the parameters b and c but significantly shrinks the range for

parameter a towards the first moment.
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