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We investigate the phase transition of the four-dimensional Ising model with two types of ten-
sor network scheme, one is the higher-order tensor renormalization group and the other is the
anisotropic tensor renormalization group. The results for the internal energy and magnetization
obtained by the former algorithm with the impure tensor method, enlarging the lattice volume up
to 10244, are consistent with the weak first-order phase transition. For the later algorithm, our
implementation successfully reduces the execution time thanks to the parallel computation and
the results provided by ATRG seems comparable to those with HOTRG.
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1. Introduction

According to the perturbative renormalization group analysis, the leading scaling behavior
of the four-dimensional ferromagnetic Ising model is specified by the mean-field theory and it is
modified by the multiplicative logarithmic factor [1]. Since the Ising model is characterized by
the infinite coupling limit of the single-component scalar ϕ 4 theory, the model in four dimensions
has been attracting the interest of particle physicists in the context of the triviality of the scalar
ϕ 4 theory. Numerical simulation of the Ising model on hypercube lattice therefore serves as a
nonperturbative indirect test of the triviality [2], but no Monte Carlo (MC) study has confirmed
the logarithmic correction in the scaling behavior of the specific heat, (ln |t|)1/3 with t the reduced
temperature. The latest and detailed MC simulation was carried out by Lundow and Markström and
they revealed that the extrapolation to the reliable thermodynamic limits based on the MC study
with the linear system size L ≤ 80 was hindered by a non-vanishing finite-volume effect [3, 4].

As a different approach other than the MC method, it is so much worth trying the tensor net-
work scheme. In this work we employ the tensor renormalization group approach originally pro-
posed by Levin and Nave [5], which already has wide numerical applications to the field theories in
particle physics [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], to investigate the four-dimensional Ising
model. This is a kind of real-space renormalization group approach, and some of the algorithms
are ready to be applied to higher-dimensional systems allowing a direct treatment of the huge
lattice, essentially in the thermodynamic limit. One of such methods is the higher-order tensor
renormalization group (HOTRG) [18], which has been applied to many lattice systems, including
the three-dimensional Ising model [18, 19]. The other is the anisotropic tensor renormalization
group (ATRG) recently proposed by Adachi et al. [20]. The biggest advantage of ATRG is the
drastic reduction of memory and computational costs, compared with HOTRG, and ATRG is po-
tentially able to achieve the higher accuracy than HOTRG with the fixed execution time [20]. We
apply the HOTRG and ATRG with parallel computation to investigate the phase transition of the
four-dimensional Ising model.

2. HOTRG and ATRG with parallel computation

The algorithms of HOTRG and ATRG are schematically illustrated in Figs. 1 and 2, respec-
tively. The approximation applied in HOTRG is based only on the higher-order singular value
decomposition (HOSVD) for the two adjacent local tensors, but ATRG has two types of approxima-
tion; one is the singular value decomposition (SVD) for each local tensor and the other is HOSVD
for two adjacent decomposed tensors, which are constructed from the former approximation.

We briefly explain the efficiency of the parallel computation for HOTRG. The HOTRG origi-
nally proposed in Ref. [18] is easily extended to the d-dimensional lattice system and its memory
cost scales with D2d

cut and computational time D4d−1
cut , where Dcut is the bond dimension which con-

trols the accuracy of the HOTRG algorithm. The calculation of O(D4d−1
cut ) is devoted to the tensor

contraction to complete the block-spin transformation illustrated with the red dotted circle in Fig 1
(B), which can be carried out with parallel computation. Indeed, the implementation proposed in
Ref. [21] reduces the memory cost per process to O(D2d−1

cut ) and the computational time per process
to O(D4d−3

cut ). A key idea of this implementation can also be found in Ref. [22].
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Figure 1: Schematic illustration of HOTRG. (A) Local tensors construct tensor network representation. (B)
Higher-order SVD (HOSVD) introduces the optimal approximation. (C) After the contraction, the lattice
size is reduced by a factor of 2.
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Figure 2: Schematic illustration of ATRG. (A) Local tensors construct tensor network representation. (B)
SVD for local tensor introduces the extra approximation compared with HOTRG. (C) After the contraction,
the lattice size is reduced by a factor of 2.

We now explain our strategy to develop the four-dimensional ATRG. The proposed algorithm
in Ref. [20] includes two types of O(D2d+1

cut ) calculation; one is the partial SVD for swapping
tensor indices, which gives the tensors represented with dark blue symbols in Fig. 2 (B) and the
other is the contraction to complete the block-spin transformation illustrated with the red dotted
circle in Fig 2 (B). For the former computation, Ref. [23] points out a way to reduce the cost to
O(Dmax(d+3,7)

cut ). The authors in Ref. [20] also demonstrate a different technique to reduce the cost
of partial SVD to O(Dd+3

cut ). On the other hand, the execution time of tensor contraction is reduced
by parallel computation. We employ 2Dcut processes to distribute the elements of the two locally
decomposed tensors represented with light blue symbols in Fig. 2 (B) to each process according to
the one of d + 1 indices, which is not contracted in the block-spin transformation. Therefore, the
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computational cost per process is reduced from O(D2d+1
cut ) to O(D2d

cut). The memory footprint of
our implementation scales similarly to the original ATRG as Dd+1

cut . We have implemented the ran-
domized SVD (RSVD) for the partial SVD. For the detailed algorithm of RSVD, see Ref. [24], for
instance. The accuracy of RSVD is controlled by the over sampling parameter p and the numbers
of the iteration q to update the orthogonal matrix, which is used to reduce the size of the matrix to
be decomposed. RSVD can reproduce the comparable result to the ordinal SVD with sufficiently
large p and q unless the degenerated singular values are decimated.

3. Numerical results

3.1 HOTRG
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T = 6.65036875
T = 6.65036250

Figure 3: X at the n-th iteration of HOTRG with
Dcut = 13. Red and blue lines correspond to the
disordered and ordered phases, respectively.
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Figure 4: Transition point as a function of bond
dimension. Error bars are within the symbols.
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Figure 5: Internal energy obtained by HOTRG
with Dcut = 13. The lattice volume reaches 2n

after n iterations of HOTRG. Tc estimated by X
is located within the gray band.
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Figure 6: Spontaneous magnetization in the
thermodynamic limit obtained by HOTRG with
Dcut = 13. Gray band shows the restriction from
X to the location of transition point.

We present the results with the parallelized HOTRG, enlarging the lattice size up to 10244.
Figure 3 shows a typical convergence behavior of the indicator of symmetry breaking, referred
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as X approximately evaluating the degeneracy of the largest components of local tensor, defined
in Ref. [25]. We can restrict the location of the transition point from the behavior of X (Fig. 4).
As a result, we have obtained Tc(Dcut = 13,L → ∞) = 6.650365(5). Figure 5 shows the internal
energy as a function of temperature, where we find a finite jump with mutual crossings of curves
for different volumes around the transition point. These are the characteristic features of the first-
order phase transition, as discussed in Ref. [26]. The value of the latent heat in the thermodynamic
limit is estimated as 0.0034(5). The similar volume dependence of internal energy with a finite
jump in the thermodynamic limit has been confirmed with Dcut = 14. We also evaluate the spon-
taneous magnetization (Fig. 6) and again a finite jump, whose value is 0.037(2), emerges around
the transition point. The detailed strategy, referred as the impure tensor method, to evaluate these
thermodynamic quantities is described in Ref. [22].

3.2 ATRG

We firstly applied ATRG to the two-dimensional Ising model and evaluated the indicator of
spontaneous symmetry breaking X and the internal energy with the impure tensor method. The
results verified that X and the impure tensor method nicely worked within the algorithm of ATRG.
We also confirmed that in the four-dimensional Ising model, the RSVD with p≥ 2Dcut and q≥Dcut

gave p,q-independent values for free energy, as claimed in Ref. [23]. For the internal energy, p,q-
dependence almost vanishes with slightly larger p and q compared with the case of free energy.
We always draw entries of the trial matrix in RSVD from the normal distribution N (0,1) and
set p = 4Dcut and q = 2Dcut in the following1. We ascertained that the execution time for our
implementation of the four-dimensional ATRG scaled with D8

cut.
We now move on to the preliminary results for the four-dimensional Ising model obtained by

the parallelized ATRG. We have varied the bond dimension in ATRG up to 39. At the same bond
dimension, the accuracy of ATRG should be degraded compared with that of HOTRG, because of
the extra approximation introduced in ATRG. For comparison, we observe the free energy normal-
ized by that of HOTRG with Dcut = 13; fATRG(Dcut)/ fHOTRG(Dcut = 13). The result at L = 1024 is
shown in Fig. 7. We found that our implementation of ATRG with Dcut = 39 tended to take almost
the same execution time to obtain the comparable value of free energy by our parallelized HOTRG
with Dcut = 13. Figure 8 shows

δ f = | fATRG(Dcut)− fATRG(Dcut = 39)|/ | fATRG(Dcut = 39)| , (3.1)

which estimates the Dcut dependence in free energy. Though δ f decreases monotonically as a
function of bond dimension, the convergence of free energy seems slightly slower compared with
the Dcut = 13 case in HOTRG [22]. Figure 9 shows the behavior of X evaluated by ATRG with
Dcut = 39. With the use of X , we specify the location of transition temperature as a function of
bond dimension (Fig. 10). The difference between Tc(Dcut = 13) by HOTRG and Tc(Dcut = 39) by
ATRG is about 0.12%. We have also evaluated the internal energy. Although it shows a signal of
the finite jump at the transition point as in Fig. 5, it may need further investigation taking account
of the current situation that we have not yet confirmed a sufficient convergence of the free energy
in terms of Dcut.

1Notice that the procedure to update the orthogonal matrix with q iterations can be carried out within
O(qDmin(d+3,6)

cut ) computational complexity, employing the technique proposed in Ref. [23].
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Figure 7: Ratio of the free energy at T =

6.65035 and L = 1024 obtained by ATRG and
HOTRG. Horizontal axis shows the bond dimen-
sion set in ATRG.
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Figure 8: Convergence behavior of free energy
at T = 6.65035 as a function of bond dimension.
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Figure 9: X at the n-th iteration of ATRG with
Dcut = 39. Red and blue lines correspond to the
disordered and ordered phases, respectively.
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Figure 10: Transition point as a function of bond
dimension. Error bars are all within the symbols.

4. Summary and outlook

We have studied the phase transition of the four-dimensional Ising model with two types of
tensor network scheme, HOTRG and ATRG. The results obtained by HOTRG are consistent with
the characteristic features of the weak first-order phase transition; a finite jump in the internal en-
ergy with the mutual crossings of curves for different volumes and the discontinuity emerged in the
order parameter around the transition point. The ATRG, whose computational cost is so fascinat-
ing in application of tensor network scheme to the higher-dimensional systems, has also gave the
comparable results to HOTRG for the free energy and the transition point. Further investigation of
the internal energy with ATRG is currently in progress.
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