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Extraction of CKM matrix elements from lattice QCD
results using dispersion relations
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The form factors in the semileptonic decays of heavy B/D meson decays can be represented by
dispersion relations, by which the kinematics in the decay region are related to the ones in the
scattering region. By fitting to the lattice QCD data on the form factors, the subtraction constants
in their dispersive representations can be determined such that the form factors in the whole
kinematical region are obtained. Cabibbo–Kobayashi–Maskawa elements can be extracted with
form-factor values at q2 = 0.
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1. Introdcution

Exclusive semileptonic decays play a crucial role in the determination of Cabibbo-Kobayashi-
Maskawa (CKM) matrix element [1], which is of particular importance to test the standard model
(SM) since any effects of violation of unitarity of the CKM matrix could be regarded as signals
of new physics beyond SM. Nevertheless, there exist tensions between the values of CKM matrix
elements extracted from exclusive and inclusive processes, see e.g. Ref [2] and the references
therein. Here we intend to review the work done in Refs. [3, 4, 5] regarding the extraction of the
CKM matrix elements from lattice QCD results using dispersion relations.

One of the simplest types of semileptonic decays is H(p)→ H ′(p′)`(p`)ν̄`(pν), where `, ν̄`,
H and H ′ stand for lepton, anti-neutrino, initial and final hadrons, respectively. Under one-boson
exchange approximation, the corresponding invariant amplitude reads

M =
GFVq′q√

2

{
ū(p`)γµ(1− γ5)v(pν)

}{
〈H ′(p′)|q̄′γµ(1− γ5)q|H(p)〉

}
, (1.1)

where Vq′q represents the element of CKM matrix and GF = 1.166×10−5GeV−2 is the Fermi con-
stant. In above, the term in the first curly braces is called the leptonic part which is well-known in
the sense that it can be straightforwardly calculated in Standard Model. In contrast, the hadronic
part in the second curly braces is usually difficult to be directly derived in Quantum Chromodynam-
ics (QCD) due its non-perturbative property at low energies. In the low-energy region, one needs
to adopt approaches, such as lattice QCD, effective field theories or phenomenological models, to
extract information on the hadronic part.

In the case that both H and H ′ are mesons with quantum numbers JP = 0−, the hadronic part
in Eq. (1.1) can be decomposed as

〈H ′(p′)|q̄′γµ(1− γ
5)q|H(p)〉= f+(q2)

[
Pµ − m2

H −m2
H ′

q2 qµ
]
+ f0(q2)

m2
H −m2

H ′

q2 qµ , (1.2)

with qµ ≡ p′µ − pµ and Pµ ≡ (p+ p′)µ . mH and mH ′ are masses of the initial and final hadrons,
respectively. The piece proportional to the γ5 does not contribute according to parity conservation.
Here f0(q2) and f+(q2) are called scalar and vector form factors, respectively, satisfying the kine-
matical constraint f+(0) = f0(0) at q2 = 0. Note that the kinematic range of the four-momentum
transfer squared q2 is [q2

min ≡ m2
` ,q

2
max ≡ (mH −mH ′)

2].
In the rest frame of the initial meson, the differential decay rate can be expressed as

dΓ

dq2 =
G2

F

96π3 η
2
W |Vq′q|2

q2

m2
H

[
1− m2

`

q2

]
|~p∗|

[
(1+

m2
`

2q2 )|H0|2 +
3m2

`

2q2 |Ht |2
]
,

H0 =
2mH |~p|∗√

q2
f+(q2) , Ht =

m2
H −m2

H ′√
q2

f0(q2) , (1.3)

where ηW accounts for electroweak corrections and m` denotes the mass of the lepton. The dif-
ferential decay rate can be measured by experiments. Once the form factors are known, the CKM
matrix element Vq′q can be readily determined.

In the energy region close to q2
max, the form factors are extensively studied by various lattice

QCD groups , see Ref. [6] for a review. While in the region close to q2
min, there are works inves-

tigating the form factors by using light cone sum rules (LCSR) and perturbative QCD (pQCD). In
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our works [3, 4, 5], dispersion techniques are utilized in order to describe the form factors in the
whole kinematic region. Furthermore, dispersion relations build an elegant bridge to connect decay
form factors with scattering amplitudes, which is helpful to communicate information each other.

2. Heavy-to-light semileptonic decays

Heavy-to-light semileptonic decays are those processes with H ∈ {D, B̄} and H ′ ∈ {π,K, K̄,η}
in Eq. (1.2). In Ref. [4], the scalar form factors in the heavy-to-light semileptonic decays D→ K̄ ¯̀ν`,
D→ π ¯̀ν`, B̄s→ K`ν̄`, and B̄→ π`ν̄` are simultaneously explored by using Muskhelishvili-omnès
(MO) dispersion relations.

To be specific, the scalar form factors, collected in a multiplet ~F according to strangeness S
and isospin I, are expressed by

~F (s) = Ω(s) · ~P(s) , s≡ q2 (2.1)

where Ω(s) is MO matrix and ~P(s) is a vector of polynomial components with real coeffecients.
The MO matrix satisfies an un-subtracted dispersion relation [7, 8],

Ω(s) =
1
π

∫
∞

sth

T∗(s)Σ(s)Ω(s)
s′− s− iε

ds′ , (2.2)

with sth being the lowest threshold. Here, T is the coupled channel S-wave HH ′ scattering am-
plitudes and Σ(s) = diag{σH1H ′1

, · · · ,σHnH ′n} with σHiH ′i =
√

[s− (mHi +mH ′i )
2][s− (mHi−mH ′i )

2]/s
and n the number of channels.

The integral equation in Eq. (2.2) can be solved by following the numerical method given
in Ref. [9]. As input, the T -matrix is needed. To that end, the scattering amplitudes based on
unitarized chiral effective theory calculated in Refs. [10, 11] are used. Actually, the most recent
unitarized amplitudes based on one-loop potentials are computed in Refs. [12, 13] but are not
employed for the reason that the involved LECs at one-loop level can not be very well determined
due to the lack of precise data, as it is pointed out in Ref. [14]. The unitarized T -matrices are
only valid in the energy region not far from thresholds, namely, only valid up to a certain value
of s, denoted by sm. In the region between s = sm and s = ∞ , we assume T -matrix elements
satisfy certain asymptotic conditions which guarantee the MO equations have unique solutions, see
Ref. [4] for details and especially for numerical solutions for the MO matrices in each channel.

According to Eq. (2.1), once the Omnès matrix is obtained, the form factor ~F (s) is determined
up to a polynomial ~P(s) which contains some unknown coefficients. To reduce the number of
unknown parameters, the dispersive representations of the scalar form factors can be matched to
next-to-leading order (NLO) chiral representations of the form factors in a kinematic region where
the latter are still valid. The NLO chiral representations can be derived in heavy meson chiral
perturbation theory by imposing the chiral Lagrangians given in Refs. [15, 16, 17].

Now, one is in the position to perform fits to Lattice QCD data on the scalar form factors. A
combined bottom-charm fit is performed to Lattice QCD and LCSR data. For the bottom sector, the
data are taken form UKQCD [18], HPQCD [19, 20] and Fermilab Lattice & MILC (labeled as FL-
MILC for short) [21]) and LCSR [22, 23] results for the scalar form factors in B̄0→ π+ and B̄0

s →
K+ semileptonic decays. In the charm sector, the recent data along with the covariance matrices

2
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provided by the ETM Collaboration [24] are used. Note that Lorentz symmetry breaking due to
hypercubic effects is clearly seen in the ETM data and has been included in the decomposition
of the current matrix elements [24]. However, those discretization errors are not considered in the
HPQCD studies [25, 26], and hence the HPQCD results are excluded in the combined fit. Fit results
are shown in Fig. 1.
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Figure 1: Predictions of scalar form factors based on the combined fit. The predictions for the D→ η ,
Ds→ K and Ds→ η scalar form factors are obtained by chiral symmetry. For comparison, we show results
from the HPQCD [25, 26] Collaboration. One can find visible differences between ETM and HPQCD sets
of D→ π and D→ K form factors in the vicinity of q2

max, particularly for the D→ π case.
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From the combined fit displayed in Fig. 1, one obtains

f D→π
+ (0) = 0.585(35)stat(19)sys1(32)sys2 , (2.3)

f D→K̄
+ (0) = 0.765(30)stat(4)sys1(14)sys2 , (2.4)

f B̄→π
+ (0) = 0.208(7)stat(15)sys1(30)sys2 , (2.5)

where the first and second sets of errors account for statistical and chiral systematical uncertainties
propagated from the errors of the LECs involved in the MO matrix, respectively. The third errors
takes into account the variations that are produced when in the best fit one considers alternatively
only HPQCD or UKQCD and FL-MILC B̄→ π form factors. In combination with the following
experimental values

f D→π
+ (0)|Vcd |= 0.1426(19) ,

f D→K̄
+ (0)|Vcs|= 0.7226(34) , (2.6)

taken from the report by the Heavy Flavor Averaging Group (HFLAV) [27], and

f B̄→π
+ (0)|Vub|= (8.9±0.3)×10−4 , (2.7)

which is an average value of the Belle and BaBar results (9.2±0.3)×10−4 [28] and (8.7±0.3)×
10−4 [29], we eventually obtain the following values for the corresponding CKM matrix elements.

|Vcd | = 0.244(22) , (2.8)

|Vcs| = 0.945(41) , (2.9)

103|Vub| = 4.3(7) . (2.10)

As byproducts, we also predict the absolute values of the vector form factors at q2 = 0 for the
channels related by chiral symmetry

| f B̄s→K
+ (0)| = 0.301(9)stat(11)sys1(26)sys2 , (2.11)

| f B̄→η

+ (0)| = 0.82(1)stat(7)sys1(3)sys2 , (2.12)

| f Ds→η

+ (0)| = 0.734(21)stat(21)sys1(3)sys2 , (2.13)

| f Ds→K
+ (0)| = 0.50(6)stat(3)sys1(5)sys2 , (2.14)

| f D→η

+ (0)| = 0.01(3)stat(2)sys1(4)sys2 . (2.15)

3. A new parametrization for B̄→ D`ν̄`

We discussed heavy-to-light semileptonic decays in the above section, now we move to a
heavy-to-heavy semileptonic decay with H = B̄ and H ′ = D. A new parametrization is proposed
for B̄→ D`ν̄` in Ref. [5]. Let us first review the formalism. Thanks to analyticity, unitarity and
crossing symmetry, the form factors in B̄→ D`ν̄` can be written in the Omnès form

fi(q2) = fi(s0)exp
[

q2− s0

π

∫
∞

sth

ds
s− s0

α i(s)
s−q2

]
, i =+ ,0 (3.1)
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Provided that s≥ sth� q2
max ≥ q2, the above equation can be written as a new form,

fi(q2) = fi(s0)
∞

∏
n=0

exp
[

q2− s0

sth
A i

n
q2n

sn
th

]
, A i

n ≡
1
π

∫ +∞

sth

ds
s− s0

α i(s)
(s/sth)n+1 . (3.2)

The coefficients A i
n are called phase moments and are related to the phases of the amplitudes in

the physical B̄D̄ scattering region. Imposing the new parametrization in Eq. (3.2), lattice QCD date
on the form factors by FL-MILC collaborations [30] and HPQCD [31] together with experimental
data on differential decay rate measured by Belle [32] are fitted. The fit results are displayed in
Fig. 2. Based on the best fit, we get

|Vcb|= (41.01±0.75)×10−3 . (3.3)
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Figure 2: Left panel: vector and scalar form factors. Right panel: differential decay rates. The gray bands
stand for the HPQCD results from the BCL continuous parametrization provided in [31].

4. Summary and outlook

The extraction of CKM matrix elements from lattice QCD results using dispersion relations,
which are presented in detail in Refs. [3, 4, 5], has been reviewed. Lattice QCD and experimental
data are fitted to pin down all the involved unknown parameters such that the CKM matrix elements
can be predicted. A new parametrization for B̄→ D`ν̄` is proposed, which can be also used to
investigate B̄→ D∗`ν̄` and Λ̄b→ Λc`ν̄` decays in future.
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