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1. Introduction

In Markov chain Monte Carlo (MCMC) simulations, we often encounter a multimodal dis-
tribution, for which transitions between configurations around different modes are difficult. We
introduced in [1] the distance between configurations to enumerate the difficulty of transitions.

In this talk, we mainly consider the simulated tempering algorithm implemented for an ex-
tremely multimodal system with highly degenerate vacua. Our distance enables us to investigate
the algorithm in a geometrical way as follows. We first define a metric on the extended configu-
ration space, and show that it is given by an asymptotically anti-de Sitter (AdS) metric [1, 2]. We
then show in a simple, geometrical way that the tempering parameter should be best placed expo-
nentially to acquire high acceptance rates for transitions in the extra dimension. We further discuss
the optimized form of the tempering parameter in the tempered Lefschetz thimble method (TLTM)
[3, 4, 5], which is an algorithm towards solving the numerical sign problem. This talk is based on
work [1, 2, 4].

2. Definition of distance

In this section, we briefly review the distance introduced in [1]. Let M ≡ {x} be a configura-
tion space, and S(x) the action. Suppose that we are given an MCMC algorithm which generates a
configuration x from y with the conditional probability P(x|y) = (x|P̂|y). We assume that it satisfies
the detailed balance condition with respect to peq(x) ≡ (1/Z)e−S(x)

(
Z ≡

∫
dxe−S(x)

)
. We fur-

ther assume that the Markov chain satisfies suitable ergodic properties so that peq(x) is the unique
equilibrium distribution.

To define the distance, we consider the Markov chain in equilibrium. We denote by Wn the
set of transition paths with n steps in equilibrium, and by Wn(x,y), which is a subset of Wn, the
set of transition paths with n steps which start from y and end at x in equilibrium. We define the
connectivity between x and y by the fraction of the sizes of the two sets:

fn(x,y)≡
|Wn(x,y)|

|Wn|
= Pn(x|y)peq(y) = fn(y,x). (2.1)

Here Pn(x|y) = (x|P̂n|y) is an n-step transition matrix. We further introduce the normalized con-
nectivity as

Fn(x,y)≡
fn(x,y)√

fn(x,x) fn(y,y)
, (2.2)

with which we define the distance as follows:

dn(x,y)≡
√
−2lnFn(x,y). (2.3)

It can be shown that this distance gives a universal form at large scales for algorithms that generate
local moves in the configuration space [1].

As an example, let us first consider the action S(x) = (β/2)∑D
µ=1 x2

µ , which gives a Gaussian
distribution in equilibrium. The distance can be calculated analytically for the Langevin algorithm:

dn(x,y) =
β

2sinh(βnε)
|x− y|2, (2.4)
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where ε is the increment of the fictitious time. We thus find that a flat and translation invariant
metric is obtained for Gaussian distributions.

As a second example, we consider the double-well action S(x) = (β/2)(x2−1)2, which gives a
multimodal equilibrium distribution. We again use the Langevin algorithm to calculate the distance.
By making use of a quantum mechanical argument and an instanton calculation, we find that the
distance behaves for β ≫ 1 as

dn(x,y) = O(e−βnε/2) (when x, y are around different modes)

dn(x,y) ∝ β (when x, y are around the same mode). (2.5)

Therefore, we confirm that our distance quantifies the difficulty of transitions.

3. Emergence of AdS geometry and the geometric optimization

3.1 Distance in the simulated tempering

The simulated tempering [6] is an algorithm to speed up the relaxation to equilibrium. In this
algorithm, we choose a parameter β in the action (e.g. an overall coefficient) as the tempering
parameter, and extend the configuration space in the β direction: M → M ×A , where A ≡
{β0,β1, · · · ,βA}= {βa}a=0,··· ,A and β0 is the original parameter of interest. We assume that {βa} are
ordered as β0 > β1 · · ·> βA. We set up a Markov chain in the extended configuration space M ×A

in such a way that the global equilibrium distribution becomes Peq(x,βa)≡ wa exp[−S(x;βa)]. We
choose the weights {wa} to be wa = 1/(A+ 1)Za (Za ≡

∫
dxe−S(x;βa)). Expectation values are to

be calculated by first realizing global equilibrium and then retrieving the subsample at βa=0.
For multimodal systems, transitions between configurations around different modes are diffi-

cult. This situation can get improved by extending the configuration space as above because then
such configuration can communicate easily by passing through the region with small βa. The bene-
fit due to tempering can be enumerated in terms of the distance. Table 1 shows the distance between
two modes in the original configuration space with and without tempering for the double-well ac-
tion. We see that the introduction of the simulated tempering drastically reduces the distance.

n without tempering with tempering
10 39.1 26.5
50 19.2 7.16
100 16.9 4.35
500 13.2 0.708

1,000 11.7 0.106
5,000 8.46 2.78×10−8

Table 1: Comparison of the distance with and without tempering [1].

3.2 Emergence of AdS geometry

We hereafter consider an extremely multimodal system with highly degenerate vacua. As a
typical example, we use the action S(x;β )≡ β ∑D

µ=1
(
1− cos(2πxµ)

)
.
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According to the definition of our distance, dn(x,y) is negligibly small when x and y lie around
the same mode, while dn(x,y) is large when x and y are around different modes. Therefore, when we
investigate the large-scale geometry of M , we can identify configurations around the same mode as
a single configuration. We write the coarse-grained configuration space thus obtained as M̄ (for the
cosine action, M̄ = ZD). We can similarly coarse-grain the extended configuration space when the
simulated tempering is implemented. We write the extended, coarse-grained configuration space
as M̄ ×A .

We define the metric on M̄ ×A = {X ≡ (x,βa)} in terms of the distance:

ds2 = gµνdX µdXν = d2
n(X ,X +dX), (3.1)

where X and X + dX denotes nearby points in M̄ ×A . It can be shown that this metric is an
asymptotically AdS metric [2]. We here sketch the proof. We first note that the action is invariant
under the lattice translation xµ → xµ +m (m ∈Z) and thus, the metric components are independent
of x. Furthermore, since the action is also invariant under the reflection xµ → −xµ , there is no
off-diagonal components. Thus we deduce that the metric takes the following form:

ds2 = f (β )dβ 2 +g(β )
D

∑
µ=1

dx2
µ . (3.2)

We are left with determining two functions f (β ), g(β ).
We first consider g(β ). Since transitions in the x direction are difficult for larger β , g(β )

should be an increasing function of β at least when β is large. We here assume that the leading
dependence on β for β ≫ 1 can be written as a power of β :

d2
n((x,β ),(x+dx,β )) = const. β q

D

∑
µ=1

dx2
µ (β ≫ 1), (3.3)

where q is a constant. On the other hand, the functional form of f (β ) for β ≫ 1 can be determined
by evaluating the distance in the β direction from the definition (2.3) as follows. We first approx-
imate the local equilibrium distribution in β ≫ 1 by Gaussian. Then it turns out that the distance
between two points (x,βa), (x,βa+1) is a function of the ratio βa/βa+1 [2]. This means that the
distance in the β direction is invariant under scaling β → λβ for large β , and thus we obtain

d2
n((x,β ),(x,β +dβ )) = const.

dβ 2

β 2 (β ≫ 1). (3.4)

Putting everything together, we conclude that the metric on M̄ ×A is given by

ds2 = l2

(
dβ 2

β 2 +αβ q
D

∑
µ=1

dx2
µ

)
(β ≫ 1) (3.5)

with constants l,α,q. This is an AdS metric, as can be seen by the coordinate transformation
β → (

√
αqz/2)−2/q:

ds2 =

(
2l
q

)2

· 1
z2

(
dz2 +

D

∑
µ=1

dx2
µ

)
, (3.6)
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Figure 1: Calculated distances [2]. The solid line is the geodesic distance with the fitted parameters.

which is a Euclidean AdS metric in the Poincaré coordinates.
We can verify this metric in the following way. We first numerically calculate the distance

dn(X ≡ (0,βa),Y ≡ (x,βa)) for a = 0,1,2 and x = 1, · · · ,10. We then make a χ2 fit by using as the
fitting function the geodesic distance calculated from the metric (3.5):

I (x,βa; l,α,q)≡ 4l
q

ln


√
(q
√

α|x|/4)2 +β−q
a +q

√
α|x|/4

β−q/2
a

 . (3.7)

We carried out the above calculations for a two-dimensional (D = 2) configuration space, and
obtained the results shown in Fig. 1 [2]. The parameters are determined to be l = 0.0404(14),
α = 2.34(48)×105, q = 0.289(12) with

√
χ2/(30−3) = 2.7. The good agreement shows that the

distances can be regarded as geodesic distances of an asymptotically Euclidean AdS metric.

3.3 Geometrical optimization

Our aim here is to optimize the functional form of βa = β (a) so that transitions in the extended
direction become smooth. We make this optimization by referring to the geometry of the extended
configuration space. Note that, since it is the parameter a that is directly dealt with in MCMC sim-
ulations, we expect that the smooth transitions correspond to a flat metric in the extended direction
when a is used as one of the coordinates: gββ dβ 2 = const. da2. Since the geometry of M̄ ×A

is asymptotically AdS (3.5), this means that dβ 2/β 2 ∝ da2. This in turn determines the functional
form of βa to be exponential in a, βa = β0R−a (β0,R: constants).

We confirmed this expectation numerically by gradually changing the value of βa so that the
distances between different modes are minimized [2]. The result is shown in Fig. 2. We see that
the optimized form of βa certainly takes an exponential form.

Figure 2: Optimized values for {βa} (a = 1, . . . ,8) [2]. The blue dots are the initial values, and the orange
dots are the resulting optimized values.
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4. Tempering parameter in the tempered Lefschetz thimble method

The tempered Lefschetz thimble method (TLTM) [3, 4, 5] (see also [9]) is an algorithm towards
solving the sign problem. In this algorithm, by deforming the integration region from RN to Σ ⊂
CN , we reduce the oscillatory behavior of the reweighted integrals that appear in the following
expression:

⟨O(x)⟩=
∫

Σ dze−S(z)O(z)∫
Σ dze−S(z)

=

∫
RN dxe−ReS(x)e−iImS(x)O(x)/

∫
RN dxe−ReS(x)∫

RN dxe−ReS(x)e−iImS(x)/
∫
RN dxe−ReS(x)

. (4.1)

In Lefschetz thimble methods, such a deformation is made according to the antiholomorphic gra-
dient flow: żi

t = [∂iS(zt)]
∗ with zi

t=0 = xi, where the dot denotes the derivative with respect to t.
This flow equation defines a map from x ∈ RN to z = zt(x) ∈ CN , and a new integration surface
is given by Σt ≡ zt(RN). Σt approaches a union of Lefschetz thimbles {Jσ} as t → ∞, and the
integrals remain unchanged under the continuous deformation thanks to Cauchy’s theorem. Each
thimble Jσ has a critical point zσ (where ∂ziS(zσ ) = 0), and configurations z ∈ Jσ give the same
phase, ImS(z) = ImS(zσ ) = const. Thus, the oscillatory behavior of the reweighted integrals will
get much reduced for large t. In the TLTM, we implement a tempering algorithm by choosing the
flow time t as the tempering parameter in order to cure the ergodicity problem caused by infinitely
high potential barriers between different thimbles.

We can give a geometrical argument that the optimized form of flow times ta is linear in a [4].
In fact, at large t, ReS(zt(x)) increases exponentially as βt ∝ econst. t . As in the simulated tempering,
we expect that the optimal form of βta is an exponential function of a. Therefore, ta should be a
linear function of a (see also discussions in [8]).

In the application of TLTM to the Hubbard model [4], we confirmed that this choice actually
works well. Fig. 3 shows the acceptance rates between adjacent time slices, where ta is taken to be
a piecewise linear function of a with a single breakpoint. This choice results in the acceptance rates
being roughly above 0.4. Most notably, the acceptance rates become constant for larger t (larger
a), where Σt gets close to the thimbles and the above discussion becomes more valid.

� �
�

�

�
�

�

�
�

� �

� � � � � ��
���

���

���

���

���

�

�
�
�
�
�
��
�
�
�
��
��

Figure 3: Acceptance rates in the ta direction with β µ = 8. Larger a corresponds to larger ta.

5. Conclusion and outlook

We introduced the distance between configurations, which quantifies the difficulty of transi-
tions. We then discussed that an asymptotically AdS geometry emerges in the extended, coarse-
grained configuration space, and showed that the optimization of the tempering parameter can be
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made in a simple, geometrical way. We further argued how to determine the optimized form of the
tempering parameter in the tempered Lefschetz thimble method.

As for future work, it should be interesting to investigate the distance in the Yang-Mills the-
ory, where the coarse-graining of the configuration space can be made by identifying configurations
with the same topological charge as a single configuration. We further would like to apply the dis-
tance to models whose degrees of freedom can be interpreted as spacetime coordinates (e.g., matrix
models) [10]. Then the geometry of the configuration space directly gives that of a spacetime. We
expect that this formulation gives a systematic way to construct a spacetime geometry from ran-
domness and provides us with a way to define a quantum theory of gravity.

A study along these lines is now in progress and will be reported elsewhere.
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