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Non-perturbative matching of three/four-flavor
Wilson coefficients with a position-space procedure
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We construct a strategy to non-perturbatively convert Wilson coefficients in the four-flavor theory
to those in the three-flavor theory. This non-perturbative matching is expected to reduce one of
the biggest systematic uncertainties in RBC/UKQCD’s K → ππ calculation, where the matching
was performed perturbatively at scales below the charm threshold. Since our method uses two-
point functions in position space, which are a gauge-invariant and are free from contact terms,
it prevents irrelevant mixing with gauge noninvariant operators and operators that vanish by the
equations of motion. In this report, we present the strategy and our preliminary results for the non-
perturbative matching of the Wilson coefficients that multiply the ∆S = 1 four-quark operators
associated with K → ππ decays.
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1. Introduction

Numerical simulation of lattice QCD is a good tool to calculate matrix elements of weak
decays, while there is a large scale separation between the weak and QCD scales. Flavor-changing
processes can be expressed as effective interactions at low energies by integrating out particles
heavier than the renormalization scale µ . The property of an effective interaction is expressed
by the corresponding weak Hamiltonian, which is composed of effective operators and Wilson
coefficients

HW = ∑
i

w
Sn f
i (µ)O

Sn f
i (µ). (1.1)

Lattice QCD is useful to compute individual matrix elements associated with four-quark or two-
quark operators that give the leading contribution to the weak process.

The information of heavy particles that are integrated out is expressed in terms of the Wilson
coefficients, which are perturbatively known to one- or two-loop level for many processes. The
large scale separation between the weak and QCD scale is accommodated by the renormalization
group, which enables us to perform the scale evolution of Wilson coefficients from the weak scale
µ = mW to lower scales.

While the weak Hamiltonian and its matrix elements are independent of renormalization
scheme and scale, we need to choose those of effective operators and Wilson coefficients in ac-
tual calculation as in Eq. (1.1). Moreover, we also need to use the same number n f of active

flavors to calculate the Wilson coefficients w
Sn f
i (µ) and the matrix element with effective operators

O
Sn f
i (µ). Namely, if we calculate matrix elements without the charm and heavier quarks, we need

the corresponding Wilson coefficients in the three-flavor theory to construct the appropriate weak
Hamiltonian. The difference between the three- and four-flavor Wilson coefficients is O(α2

s ) if the
charm quark cannot be involved in the effective operators. On the other hand, if the charm quark
is involved in a weak operator associated with the weak process, there can be larger difference
between the three- and four-flavor Wilson coefficients. For example, there are current-current op-
erators with charm in ∆S = 1 four-quark operators associated with K → ππ . In the three-flavor
theory, these operators decouple and become a combination of operators composed of the lighter
quarks. Therefore the Wilson coefficients of charm-involved operators in the four-flavor theory are
absorbed into other Wilson coefficients in the three-flavor theory. Taking into account this absorp-
tion is called “matching.” Such a matching needs to be considered not only at the charm threshold
but also at the bottom threshold. While the matching at the bottom threshold can be done perturba-
tively with enough precision, the perturbative matching at the charm threshold, 1.3 GeV, may can
cause a significant systematic uncertainty [1].

In this work, we construct a nonperturbative strategy to match the Wilson coefficients between
the three- and four-flavor theories so that we do not need to employ the perturbative matching
procedure. Section 2 designs the theoretical description and our strategy for the nonperturbative
matching of the Wilson coefficients. In Section 3 we discuss the ∆S = 1 four-quark operators
associated with K → ππ and indicate the operator bases used in this work. In Section 4 we show
the preliminary result of our test calculation on a 163 ×32 lattice ensemble.
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2. Theoretical foundation

In this work we consider the mixing of charm-involved operators into other operators com-
posed of the lighter quarks and its effect on the Wilson coefficients. We define On f as a vector of
operators that is used in the weak Hamiltonian in the n f -flavor theory. At long distances (≫ 1/mc),
the charm quark decouples and operators with the charm quark behave the same as a combination
of operators composed of the lighter quarks. Thus the decoupling of the charm quark in weak
operators can be expressed as

OS4
4;α(µ)→ ∑

i
M

S4/3
αi (µ,µ ′)OS3

3;i(µ
′), (2.1)

with a matrix M
S4/3
αi (µ,µ ′). Here Sn f denotes a renormalization scheme S in the n f -flavor theory

and µ and µ ′ are the renormalization scale in the four- and three-flavor theories, respectively.
This decoupling means a correlation function of OS4

4;α and any operator O at long distances can be
expressed in terms of correlation functions of O3;i’s and O after proper renormalizations:〈

OS4
4;α(µ;x)OX4(µ̄;y)†

〉
4

|x−y|≫1/mc−−−−−−−−→ ∑
i

M
S4/3
αi (µ,µ ′)

〈
OS3

3;i(µ
′;x)OX3(µ̄;y)†

〉
3
. (2.2)

Here, ⟨. . .⟩n f stands for the vacuum expectation value in the n f -flavor theory. This relation pro-

vides a part of the condition to determine the matrix M
S4/3
αi (µ,µ ′). By calculating these correlation

functions with a sufficient number of O’s we can determine M
S4/3
αi (µ,µ ′).

The matching matrix M
S4/3
αi (µ,µ ′) also gives the relation between Wilson coefficients w

Sn f
n f in

the three- and four-flavor theories. Inserting the decoupling relation (2.1) to the equivalence of the
weak hamiltonian

HW = ∑
i

wS3
3;α(µ

′)OS3
3;i(µ

′) = ∑
α

wS4
4;α(µ)O

S4
4;α(µ), (2.3)

we obtain
wS3

3;i(µ
′) = ∑

α
wS4

4;α(µ)M
S4/3
αi (µ,µ ′). (2.4)

Thus the three-flavor Wilson coefficients can be obtained from the four-flavor Wilson coefficients
and the matching matrix, M

S4/3
αi (µ,µ ′), which can be nonperturbatively determined by the condi-

tions (2.2) imposed for various operators O.
In this work we choose O = O3;i and neglect the effect of sea charm quarks, i.e. we calculate

all correlators on 2+1-flavor lattice ensembles. Then Eq. (2.2) becomes

∑
β

ZS4/lat
O4;αβ (µ;1/a)G4-3

β i (x− y) = ∑
j,k

M
S4/3
α j (µ,µ ′)ZS/lat

O3; jk(µ
′;1/a)G3-3

ki (x− y) (2.5)

where

G4-3
αi (x− y) =

〈
Olat

4;α(1/a;x)Olat
3;i(1/a;y)

†
〉

2+1
, G3-3

i j (x− y) =
〈

Olat
3;i(1/a;x)Olat

3; j(1/a;y)
†
〉

2+1
,

(2.6)
and ZS4/lat

O4;αβ (µ;1/a) and ZS3/lat
O3;i j (µ;1/a) are the renormalization matrices of the four- and three-
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flavor operators. While we neglect the effect of sea charm quarks, we still need to distinguish these
two renormalization matrix since ZS4/lat

O4;αβ (µ;1/a) mixes operators with the charm quark, whereas

ZS4/lat
O4;αβ (µ;1/a) does not. The renormalization matrices on the right of the correlator matrices

G4-3
β i (x− y) and G3-3

i j (x− y) are omitted since they are equivalent with each other after neglect-
ing the effect of sea charm quarks. If G3-3

i j (µ;x− y) is invertible it means we have a sufficient
number of conditions to determine MS

αi(µ,µ ′):

MS
αi(µ,µ ′) = ∑

j,k,β
ZS/lat

O4;αβ (µ;1/a)G4-3
β j (x− y)

[
G3-3(x− y)

−1
]

jk

[
ZS/lat

O3
(µ ′;1/a)

−1
]

ki
. (2.7)

3. ∆S = 1 four-quark operators

In this work, we apply the matching procedure explained in the previous section to the ∆S = 1
four-quark operators, which are associated with K → ππ matrix elements. In this report, we focus
on the matching matrix between the lattice operators, which can be used to determine the three-
flavor Wilson coefficients in any scheme

Mlat
αi(1/a,1/a;x) = ∑

j
G4-3

α j (x)
[
G3-3(x)

−1
]

ji
. (3.1)

In general the calculation of two-point functions of four-quark operators requires all-to-all propa-
gators as there are diagrams that contain a quark loop at the sink point. These diagrams can induce
a quadratic divergence ∼ a−2 as a result of mixing with the lower-dimensional operators s̄d and
s̄γ5d. We remove such divergence by replacing the four-quark operators as

Olat
4;α/3;i → O lat

4;α/3;i = Olat
4;α/3;i −CS

4;α/3;is̄d −CP
4;α/3;is̄γ5d. (3.2)

Here, the power divergent coefficients CS
4;α/3;i and CP

4;α/3;i are determined by the condition〈
s̄d(x)O lat

4;α/3;i(y)
†
〉∣∣∣

|x−y|=x0
= 0,

〈
s̄γ5d(x)O lat

4;α/3;i(y)
†
〉∣∣∣

|x−y|=x0
= 0, (3.3)

with a specific distance x0, which we choose 2.5 GeV−1. In what follows the correlator matrices
G4-3

αi and G3-3
i j stand for the correlator matrices after the subtraction of the power divergence.

In the four-flavor theory, there are 12 ∆S = 1 four-quark operators [2, 3], which give a con-
tribution to K → ππ decays from the Standard Model and are obtained from the full theory by
integrating out the weak bosons, the top and bottom quarks. Since there are 3 identities [4] among
these operators, the number of independent operators is 7 in the three-flavor theory and 9 in the
four-flavor theory. The independent operators involve 4 operators with the charm and anti-charm
quarks, which are all in the (8,1) representation of SU(3)L×SU(3)R chiral symmetry. These charm
operators play an important role in the matching of the Wilson coefficients and mix with a combina-
tion of (8,1) operators composed of the lighter quarks. Therefore we focus on the (8,1) operators
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and take the operator bases as

O3;1 = O4;1 =
1√
10

(
(s̄ada)L(ūbub)L +(s̄adb)L(ūbua)L +2(s̄ada)L(d̄bdb)L +2(s̄ada)L(s̄bsb)L

)
,

O3;2 = O4;2 =
1√

2
((s̄ada)L(ūbub)L − (s̄adb)L(ūbua)L) ,

O3;3 = O4;3 =
1√

3

(
(s̄ada)L(ūbub)R +(s̄ada)L(d̄bdb)R +(s̄ada)L(s̄bsb)R

)
,

O3;4 = O4;4 =
1√

3

(
(s̄adb)L(ūbua)R +(s̄adb)L(d̄bda)R +(s̄adb)L(s̄bsa)R

)
,

O4;5 = (s̄ada)L(c̄bcb)L, O4;6 = (s̄adb)L(c̄bca)L,

O4;7 = (s̄ada)L(c̄bcb)R, O4;8 = (s̄adb)L(c̄bca)R, (3.4)

where the summation over color indices a,b is understood and the spin contraction is taken as

(s̄d)L(q̄q)R/L = ∑
µ

s̄γµ(1− γ5)d · q̄γµ(1± γ5)q. (3.5)

By taking these bases, the matching matrix is an 8×4 matrix but it is trivial that the upper 4×4 sub
matrix is the unit matrix before renormalization. Thus only the lower 4×4 sub matrix is nontrivial
and represents the remnant effects of the charm quark at long distances. The relation between the
three- and four-flavor Wilson coefficients (2.4) therefore becomes

wlat
3;i(1/a) = wlat

4;i(1/a)+
8

∑
α=5

wlat
4;α(1/a)Mlat

αi(1/a,1/a). (3.6)

While this unrenormalized formula may not be useful for actual matching of renormalized Wilson
coefficients, it may be all that is needed to interpret our lattice results.

4. Exploratory calculation

In this section we show our preliminary result for the matching matrix Mlat
αi before renormal-

ization (3.1), whose nontrivial part is the 4× 4 sub matrix of α = 5–8 as explained above. Our
exploratory calculation is carried out on a 163 ×32 domain-wall ensemble at a−1 = 1.78 GeV. We
employ pure random noise sources to calculate all-to-all quark propagators. Correlation functions
measured on the lattice have values only at discrete lattice sites violating O(4) symmetry. In order
to reduce the discretization error and obtain a result which is a continuous function of the distance
|x| only, we apply the spherical average [5].

Figure 1 shows our preliminary results for Mlat
6i calculated with amc = 0.60 (crosses), 0.36

(circles) and 0.24 (squares). These matrix elements at α = 6 are expected to be the largest con-
tribution to the three-flavor Wilson coefficients (2.4) since they are multiplied by the O(1) Wilson
coefficient wlat

4;6 that corresponds to the current-current operator without gluon exchange O4;6, while
other elements are multiplied with the other O(αs) Wilson coefficients. While the results for other
matching matrix elements, whose magnitude and |x|-dependence are similar to these plots, are
omitted because of the restriction of pages, they will be shown in a forthcoming full paper.
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Figure 1: Preliminary results for Mlat
6i (1/a,1/a;x) calculated with amc = 0.60 (crosses), amc = 0.36 (circles)

and amc = 0.24 (squares).

A naive dimensional analysis tells us that the results in the perturbative region should be pro-
portional to |x|6 because G3-3

i j (x)’s involve diagrams with 4 quark propagators connecting the source
and sink points and thus they are proportional to |x|−12 in the perturbative region, whereas G4-3

αi (x)’s
for α = 5–8 are proportional to |x|−6 as they do not involve diagrams in which there are more than
2 quark propagators connecting the source and sink points. This is why the results are close to 0 at
short distances. Since the matching matrix must be obtained from long distances 1/|x|≪mc, where
the result in principle should be independent of the distance |x|, we plan to extract the matching
matrix from the region where we see a plateau.

Since wlat
4;6(1/a)Mlat

6i (1/a,1/a) is perturbatively O(1) and would dominate the second term on
the RHS of (3.6) as explained above, we roughly expect the difference between wlat

3;1(1/a) and
wlat

4;1(1/a) is about wlat
4;6(1/a)Mlat

6i (1/a,1/a) ≈ 0.05(2), which is about 25% of wlat
4;1(1/a) if we

assume wlat
4;1(1/a) ≈ O(αs) ≈ 0.2 . Since 25% with a 40% error means the result has ±10% un-

certainty. Namely, this matching may make about 20% change in the Wilson coefficients with
10% uncertainty, which is compatible or a little better than the perturbative matching procedure
[3]. This is a very rough estimation but may provide us with a prospect for successful matching
of the Wilson coefficients with this nonperturbative procedure as we increase the statistics and our
sampling strategy.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
1
7
4

NP matching of 3/4-flavor Wilson Coefficients Masaaki Tomii

5. Summary

We make an attempt to match the Wilson coefficients of the ∆S = 1 four-quark operators in
the four- and three-flavor theories by studying the decoupling of the charm and anti-charm quarks
in those four-quark operators. We obtain a certain signal-to-noise ratio that would be superior to
the systematic uncertainty of the perturbative matching procedure. We are about to start our main
calculation on the 323 ×64 ensembles.
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