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1. Continuum limit of SU(3) N = 1 super Yang-Mills theory with Wilson fermions

Supersymmetric gauge theories play a central role for several theoretical developments to-
wards an analytical understanding of strong interactions, such as gauge-gravity duality. However,
their numerical investigation on the lattice leads to several challenges and unsolved problems. It
is the central goal of our investigations to perform numerical simulations of supersymmetric gauge
theories.

The first target of our lattice simulations is the spectrum of bound states of N = 1 super-
symmetric Yang-Mills theory (SYM), to confirm the consistency with the theoretically expected
formation of supermultiplets. In these studies, the theory has been discretized using an efficient
and simple approach, applying Wilson fermions. In a first preparatory study we have investigated
the theory with gauge group SU(2) [1]. More recently we have also completed our studies of the
bound state spectrum for SU(3) SYM [2].

SYM is the supersymmetric counterpart of Yang-Mills theory and contains the fermionic part-
ners of the gluons, the gluinos (λ ). The Euclidan Lagrangian is

L =
1
4

FµνFµν +
1
2

λ̄ ( /D+mg)λ . (1.1)

The gluinos are Majorana fermions in the adjoint representation of the gauge group. The La-
grangian L is invariant under the supersymmetry transformations: δAµ = −2i λ̄ γµε ,
δλ =−σµνFµνε , in case of a vanishing gluino mass mg = 0.

Supersymmetry is broken in any local lattice discretization. Therefore an important aim of our
studies is to provide evidence for a restoration of supersymmetry in the continuum limit. We have
investigated two signals of supersymmetry: the supersymmetric Ward identities and the formation
of mass-degenerate supermultiplets of bound states. The lightest multiplets have been conjectured
to be chiral supermultiplets, each consisting of a scalar, a pseudoscalar, and a spin-½ fermionic
particle. The bosonic particles can be realized by either mesonic states (gluino-balls) or glueballs,
while the fermionic partner is a gluino-glue state combining gluino and gluon fields. The proposed
mesonic members of a supermultiplet are the a– f0 (λλ ) and the a–η ′ (λγ5λ ) meson, while the
states of glueball type are the 0++ and 0−+ glueballs [3, 4]. In our most recent investigations
we have considered in detail the relevant mixing of these two multiplets, and we obtained more
reliable results for the lightest states [5]. We have also started to investigate other operators and
bound states of the theory such as baryonic operators [6]. Our recent optimizations of the operator
basis have been presented in a separate contribution to this conference.

In the most generic case, supersymmetry can only be obtained by a fine-tuning of the pa-
rameters of the lattice action. In the special case of SYM the fine-tuning can be avoided if chiral
symmetry is realized on the lattice using Ginsparg-Wilson fermions. In our first investigations we
have, however, relied on the simulations with Wilson fermions. These require the fine-tuning of a
single parameter, the fermion mass mg (or equivalently the hopping parameter κ) [7]. Our tuning
approach relies on the signal for chiral symmetry restoration provided by a vanishing adjoint pion
mass. This particle is not a physical state of the theory, but can be defined in a partially quenched
setup [8].

Our previous simulations of SU(2) gauge theory have been performed with a Wilson action
using stout-smeared gauge links, and tree-level improved gauge action. For our new investigations
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of SU(3) SYM, we have employed one-loop clover-improvement of the Wilson fermion action
and demonstrated that it significantly reduces the lattice artefacts. We started by estimating the
best range of simulation parameters from investigations of finite volume effects, the sign problem,
and topological freezing that slows down the simulations. The sign problem in SYM with Wilson
fermions is due to the Pfaffian of the Dirac operator that results from the functional integration of
Majorana fermions. Negative signs are rare in our simulations and can be taken into account by
reweighting. In this way, we have estimated a reliable parameter range for our simulations [9]. We
have also confirmed consistency with the supersymmetric Ward identities [10].
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Figure 1: Extrapolation to the chiral and continuum limit shown in the plane of fixed lattice spacing. The
figure on the left hand side shows our coarsest lattice spacing β = 5.4, while the figure on the right hand side
corresponds to the finest considered lattice spacing β = 5.6. The lightest state of the gluino-glue (gg(0)), the
scalar (0++(0)), and the pseudoscalar (a–η ′(0)) channel are shown as a function of the adjoint pion mass mπ

in units of the gradient flow scale w0,χ .

We have recently completed our simulations and we have been able to extrapolate the particle
spectrum to the continuum and to the chiral limit. In the previous SU(2) SYM project, we have
performed the two extrapolations independently. Our most recent data for SU(3) SYM allowed
to apply a more reliable approach in terms of a simultaneous two-dimensional fit of all data, see
[2] for further details. The data and fits projected in the plane of two lattice spacings are shown
in Figure 1. The supersymmetric point is reached in the chiral plane at vanishing lattice spacing
(Figure 2). Since we have used a one-loop improved lattice action, a functional dependence of
discretization effects according to ag4 is expected, where a is the lattice spacing and g the bare
coupling constant. We have found that the our data are also in good agreement with a quadratic
dependence on the lattice spacing.

The final parameter ranges are: for the pion mass 0.2 < ama–π < 0.7, for the lattice spacing
0.053fm < a < 0.082fm, and for the lattice sizes from 123×24 to 243×48. The masses of bound
states in units of the gradient flow scale w0 are summarized in the following table:

Fit w0mgg̃ w0m0++ w0ma−η ′

linear fit 0.917(91) 1.15(30) 1.05(10)
quadratic fit 0.991(55) 0.97(18) 0.950(63)
SU(2) SYM 0.93(6) 1.3(2) 0.98(6)
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Figure 2: Extrapolation to the chiral and continuum limit shown in the plane of zero adjoint pion mass.
The left hand side uses a linear extrapolation in the lattice spacing a, taking into account the one-loop
improvement with the inverse coupling constant β . The right hand side is a quadratic extrapolation in a. All
quantities are in units of the gradient flow scale w0,χ .

To conclude, our findings for SU(3) SYM show the formation of supermultiplets of bound
states and consistency with the supersymmetric Ward identities, confirming the validity of our
numerical approach and providing the starting point for further investigations in two different di-
rections.

The first direction is a more detailed study of the properties of SYM, such as the phase tran-
sitions of this theory. At non-zero temperatures, we have found an interesting interplay between
the chiral and deconfinement transitions [11]. Deconfinement is absent in compactified SYM on
R3×S1, and there is a continuity towards the semiclassical regime at a small compactification ra-
dius [12]. The theory at zero temperature in the chiral limit provides further interesting features
that require a more detailed investigation. It is expected that spontaneous chiral symmetry breaking
leads to Nc different values of the gluino condensate for SU(Nc) SYM.

The second line of investigations is the extension of numerical studies towards more general
supersymmetric gauge models, such as super-QCD. The scalar fields of these theories lead to a
larger number of relevant supersymmetry breaking operators, and a more delicate tuning procedure
is required.

2. Exploratory studies of supersymmetric Yang-Mills theory with overlap fermions

Ginsparg-Wilson fermions allow to define an action with an intact (modified) chiral symmetry
even at non-vanishing lattice spacing [13]. The formulation of the Dirac operator fulfilling the
Ginsparg-Wilson relation is not unique. Domain-Wall fermions provide an exact solution in the
limit of an infinitely extended fifth dimension, and have been employed in some studies of the
gluino condensate for gauge group SU(2) [14]. Several alternative approximation schemes have
been suggested in the literature. In one exploratory investigation, also the overlap operator has
been considered [15].

We have started to explore overlap gluinos. In our approach we implement the sign function
in terms of a polynomial approximation, allowing even in the massless limit to provide a smooth
and regular force for the integration of the equation of motion required by the hybrid Monte Carlo
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method. The simulation cost of overlap gluinos is huge, as two expensive approximations are
required to compute the sign function and the square root of the determinant corresponding to the
Pfaffian. In this context, a polynomial approximation avoids an additional inner inverter to the one
already required to compute the rational approximation of the square root employed by RHMC,
and we can reach a stable precision of the rational approximation in this way.

Several drawbacks have to be faced considering the overlap operator, mainly related to the
zero modes. Effectively, each configuration with non-trivial topology has a zero mode, such that
its determinant and its Monte Carlo probabilistic weight is zero. This fact would effectively in-
duce a fixed topology in the simulations. However, zero modes are also responsible for gluino
condensation, and therefore we are facing a “zero over zero” problem. A controlled approximation
of the overlap formula can avoid zero modes as they are effectively smoothend by the polynomial
approximation.

The huge simulation cost represents a challenge for the complete investigation of the bound
state spectrum of SYM with Ginsparg-Wilson fermions. However, several of our follow-up projects
would benefit from preserving chiral symmetry on the lattice. Wilson fermions lead to an additive
renormalization of the gluino condensate, and it is more difficult to investigate spontaneous chiral
symmetry breaking and the different phases of the gluino condensate. The additive renormalization
problem can be avoided using the gradient flow, but the effects of chiral symmetry breaking prevent
from observing the Nc phases of the gluino condensate even in the chiral limit. Therefore a detailed
study of the gluino condensate requires a careful consideration of this fermion formulation.

In super-QCD and other supersymmetric gauge theories, the large number of fine-tuning pa-
rameters is reduced by the constraints of chiral symmetry. Even if fine-tuning can be handled by
checking the Ward identities, the cost of a Ginsparg-Wilson implementation will be balanced by
the reduced tuning costs.

Figure 3: The polynomial approximation of order N of the overlap formula. Left hand side: the deviation
from the exact overlap operator, whose eigenvalues lie on a circle. The eigenvalues for polynomial orders
160, 250 and 400 are shown. Right hand side: The sensitivity of the gluino condensate to the order of the
approximation.

We have performed preliminary investigations of SU(2) SYM at β = 1.6 on a small 84 volume.
The precision of our approximation is shown in Figure 3. The location of zeroes converges to the
circle in the complex plane, corresponding to the exact overlap operator. The zero mode problem is
solved by a spectral gap, which is closing for more precise approximations, as expected. Remark-
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ably, the gluino condensate seems to be quite stable as a function of the order of the approximation,
at least for the range considered in these first tests.

3. Phase transitions and compactified supersymmetric Yang-Mills theory

We have intensified our investigations of the phase transitions in SYM, in an attempt to un-
derstand the relation between confinement and chiral symmetry breaking in this theory. We have
confirmed the coincidence of the two transitions, considering also the gauge group SU(3), using
the gradient flow to eliminate the difficulties with the additive renormalization of the condensate
[16, 17].

Another interesting aspect of the phase diagram in SYM is the absence of the deconfinement
transition if periodic boundary conditions are chosen instead of the usual thermal ones. This prop-
erty of SYM on R3×S1 has led to the conjecture of continuity down to a semiclassical regime at a
small radius of the compactified direction [18].

In our first numerical investigations of compactified SYM, we have verified the absence of
the deconfinement transition [12]. However, in the regime of small compactification radius, we
have observed deviations from the predicted behavior. The confinement region extends towards
larger masses when the compactification radius shrinks, whereas it is expected that this region gets
smaller at smaller radii.

In our most recent analysis [19] we were able to identify the difference between the observed
and predicted phase boundaries as a lattice artefact stemming from the Wilson fermions. At small
radius, effectively a larger number of fermion fields contribute to the dynamics driven by lattice
artefacts.

4. Conclusions

We have obtained our final results for the low-lying bound states of SU(3) SYM using one-
loop clover-improved Wilson fermions, finding evidence for restoration of supersymmetry in the
continuum limit from the bound state spectrum and from the SUSY Ward identities. We have
several uncertainties safely under control, like finite volume effects and the sign problem.

We have started first exploratory studies with overlap fermions based on a polynomial approx-
imation of the sign function. This appears to be a controlled and feasible algorithm for practical
simulations, which would lead to a cleaner approach for the investigations of the gluino condensate,
and which reduces the fine-tuning problem for super-QCD.

Another aspect of our investigations are the phase transitions of SYM. The coincidence of the
chiral and deconfinement transition has been confirmed in our most recent simulations. The numer-
ical results for the compactified theory support the continuity down to the semiclassical regime at
small compactification radius. At a very small radius, lattice artefacts have a significant influence
on the transition line. Nevertheless, at an intermediate radius, the theory should already mimic the
semiclassical expectations and is an interesting candidate for further investigations.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
1
7
5

SU(3) SYM and SUSY gauge theories on the lattice Georg Bergner

Acknowledgements
We thank M. Ünsal for his contributions to the investigations of compactified SYM. The au-

thors gratefully acknowledge the Gauss Centre for Supercomputing e. V. (www.gauss-centre.eu)
for funding this project by providing computing time on the GCS Supercomputers JUQUEEN,
JURECA, and JUWELS at Jülich Supercomputing Centre (JSC) and SuperMUC at Leibniz Super-
computing Centre (LRZ). Further computing time has been provided the compute cluster PALMA
of the University of Münster. This work is supported by the Deutsche Forschungsgemeinschaft
(DFG) through the Research Training Group “GRK 2149: Strong and Weak Interactions - from
Hadrons to Dark Matter”. G. Bergner acknowledges support from the Deutsche Forschungs-
gemeinschaft (DFG), Grant No. BE 5942/2-1. S. Ali acknowledges financial support from the
Deutsche Akademische Austauschdienst (DAAD).

References

[1] G. Bergner, P. Giudice, I. Montvay, G. Münster and S. Piemonte, JHEP 1603 (2016) 080.

[2] S. Ali, G. Bergner, H. Gerber, I. Montvay, G. Münster, S. Piemonte and P. Scior, Phys. Rev. Lett. 122
(2019) 221601.

[3] G. Veneziano and S. Yankielowicz, Phys. Lett. B 113 (1982) 231.

[4] G. R. Farrar, G. Gabadadze and M. Schwetz, Phys. Rev. D 58 (1998) 015009.

[5] S. Ali, G. Bergner, H. Gerber, S. Kuberski, I. Montvay, G. Münster, S. Piemonte and P. Scior, JHEP
1904 (2019) 150.

[6] S. Ali, G. Bergner, H. Gerber, C. López, I. Montvay, G. Münster, S. Piemonte and P. Scior,
PoS(LATTICE2018) (2018) 207.

[7] G. Curci and G. Veneziano, Nucl. Phys. B 292 (1987) 555.

[8] G. Münster and H. Stüwe, JHEP 1405 (2014) 034.

[9] S. Ali, G. Bergner, H. Gerber, P. Giudice, I. Montvay, G. Münster, S. Piemonte and P. Scior, JHEP
1803 (2018) 113.

[10] S. Ali, G. Bergner, H. Gerber, I. Montvay, G. Münster, S. Piemonte and P. Scior, Eur. Phys. J. C 78
(2018) 404.

[11] G. Bergner, P. Giudice, G. Münster, S. Piemonte and D. Sandbrink, JHEP 1411 (2014) 049.

[12] G. Bergner and S. Piemonte, JHEP 1412 (2014) 133.

[13] P. H. Ginsparg and K. G. Wilson, Phys. Rev. D 25 (1982) 2649; R. Narayanan and H. Neuberger,
Nucl. Phys. B (Proc. Suppl.) 53 (1997) 658; M. Lüscher, Phys. Lett. B 428 (1998) 342.

[14] J. Giedt, R. Brower, S. Catterall, G. T. Fleming and P. Vranas, Phys. Rev. D 79 (2009) 025015.

[15] S. W. Kim et al. [JLQCD Collaboration], PoS(Lattice 2011) (2011) 069.

[16] G. Bergner, C. López and S. Piemonte, Phys. Rev. D 100 (2019) 074501.

[17] G. Bergner, C. López and S. Piemonte, arXiv:1911.11575 [hep-lat].

[18] P. C. Argyres and M. Ünsal, JHEP 1208 (2012) 063; T. Azeyanagi, M. Hanada and M. Ünsal, Phys.
Rev. D 82 (2010) 125013; M. Ünsal and L. G. Yaffe, JHEP 1008 (2010) 030; M. Ünsal, Phys. Rev.
Lett. 102 (2009) 182002.

[19] G. Bergner, S. Piemonte and M. Ünsal, JHEP 1811 (2018) 092.

6

http://dx.doi.org/10.1007/JHEP03(2016)080
http://dx.doi.org/10.1103/PhysRevLett.122.221601
http://dx.doi.org/10.1103/PhysRevLett.122.221601
http://dx.doi.org/10.1016/0370-2693(82)90828-0
http://dx.doi.org/10.1103/PhysRevD.58.015009
http://dx.doi.org/10.1007/JHEP04(2019)150
http://dx.doi.org/10.1007/JHEP04(2019)150
http://dx.doi.org/https://doi.org/10.22323/1.334.0207
http://dx.doi.org/10.1016/0550-3213(87)90660-2
http://dx.doi.org/10.1007/JHEP05(2014)034
http://dx.doi.org/10.1007/JHEP03(2018)113
http://dx.doi.org/10.1007/JHEP03(2018)113
http://dx.doi.org/10.1140/epjc/s10052-018-5887-9
http://dx.doi.org/10.1140/epjc/s10052-018-5887-9
http://dx.doi.org/10.1007/JHEP11(2014)049
http://dx.doi.org/10.1007/JHEP12(2014)133
http://dx.doi.org/10.1103/PhysRevD.25.2649
http://dx.doi.org/10.1016/S0920-5632(96)00746-3
http://dx.doi.org/10.1016/S0370-2693(98)00423-7
http://dx.doi.org/10.1103/PhysRevD.79.025015
http://dx.doi.org/10.22323/1.139.0069
http://dx.doi.org/10.1103/PhysRevD.100.074501
http://dx.doi.org/10.1007/JHEP08(2012)063
http://dx.doi.org/10.1103/PhysRevD.82.125013
http://dx.doi.org/10.1103/PhysRevD.82.125013
http://dx.doi.org/10.1007/JHEP08(2010)030
http://dx.doi.org/10.1103/PhysRevLett.102.182002
http://dx.doi.org/10.1103/PhysRevLett.102.182002
http://dx.doi.org/10.1007/JHEP11(2018)092

