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tibility decreases sharply. Thus in the high temperature phase the remaining topological objects

(possibly calorons) form a weakly interacting dilute gas. The overlap Dirac operator, through its

exact zero modes, allows one to measure the net topological charge. We show that separately the
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low end of the overlap Dirac spectrum. We find that slightly above the phase transition their num-

ber distributions are already consistent with an ideal gas of non-interacting topological objects.
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1. Introduction

It is well known that the finite temperature crossover of QCD is accompanied by rapid changes

in the Polyakov loop and the quark condensate, the order parameters of confinement and chi-

ral symmetry. In particular, as the (approximate) chiral symmetry, spontaneously broken at zero

temperature, gets restored above the crossover, the quark condensate drops sharply. Since the

Banks-Casher [1] relation connects the quark condensate to the spectral density of the Dirac op-

erator around zero, the latter also falls sharply as the system crosses into the high temperature

quark-gluon plasma phase. According to the traditional picture of chiral restoration, as shown in

the schematic plots of Fig. 1, the spectral density at zero becomes vanishingly small in the high

temperature phase.

Figure 1: Schematic depiction of the spectral density of the Dirac operator around zero virtuality at low

temperature (left panel) and high temperature (right panel). According to the Banks-Casher relation the

spectral density at zero is the order parameter of chiral symmetry.

However, in reality the behavior of the spectral density across the transition might be more

complicated. Based on a study of the spectrum of the overlap Dirac operator in quenched gauge

backgrounds, it was already suggested a long time ago that just above the transition temperature

the spectral density at zero does not vanish, but develops a “spike” [2]. Light dynamical fermions

are expected to suppress low Dirac eigenvalues, as those eigenvalues contribute small factors to the

Dirac determinant. Thus the excess of small eigenvalues and the resulting spike in the spectrum

was initially thought to be a quenched artifact. However, more recently it was suggested that even

light quarks cannot completely eliminate the spectral spike, at least as long as the quarks are not

exactly massless [3, 4]. Already the authors of [2] raised the possibility that this excess of low

Dirac eigenvalues may be connected to topological objects in the gauge field, and the distribution

of the number of eigenvalues in the spike supported this assumption.

In the present paper we study this question in detail using large ensembles of quenched gauge

field configurations in the high temperature phase and the overlap Dirac operator. Our main result is

that around zero virtuality in the Dirac spectrum there is a clearly separated region that is very likely

to be connected to topological objects in the gauge field. Above Tc the Dirac spectrum can thus be
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used to identify not only the net topological charge through zero modes, but also the total number

of topological objects. This enables us to examine their interactions, and in this quenched study we

do not find any trace of interactions among topological objects, to a very good approximation they

can be described as a dilute non-interacting gas.

2. Topology and the zero mode zone

In this section we briefly discuss how the lowest part of the Dirac spectrum can be connected

to topological fluctuations of the gauge field. It is an old idea that the nonzero density of Dirac

eigenvalues around zero that is needed for the spontaneous breaking of chiral symmetry, is provided

by mixing approximate zero modes of a densely packed medium of instantons and antiinstantons,

called the instanton liquid (see [5] for a review). The mixing of topological zero modes can be

easily understood by considering an instanton antiinstanton pair separated by a distance much

larger than their size. If the separation were infinite, the Dirac operator would have two opposite

chirality zero modes. However, an arbitrarily small perturbation, due to the two objects being a

finite distance apart, will split the degeneracy of the zero modes, resulting in two complex conjugate

eigenvalues of very small magnitude. Their magnitude, i.e. their splitting from zero is mainly

controlled by the distance of the topological objects; the closer they are, the larger the perturbation

of the zero modes and the larger the splitting will be.

Unfortunately, in QCD at zero temperature, even if there are instantons, they are too closely

packed for this picture to be applicable in a straightforward way. In particular, it is not possible to

identify those small non-zero eigenvalues in the spectrum that are connected to topology. This is

because the spectral density is monotonically rising everywhere, and the lowest part of the spec-

trum, termed the zero mode zone (ZMZ) is smoothly connected to the bulk of the spectrum. The

situation, however, changes drastically as the system crosses over into the high temperature, chi-

rally restored phase. As the temperature increases and the (Euclidean) temporal size of the system

shrinks, bigger instantons are squeezed out and fluctuations of the topological charge fall sharply,

the instanton liquid turns into a dilute gas of finite temperature topological objects, calorons. As

the typical distance between topological objects increases, the splitting of the approximate zero

modes becomes ever smaller and these small Dirac eigenvalues are expected to be present in the

spectrum with a finite volume density, their density corresponding to that of the topological objects

surviving at the given temperature. The question is whether these small eigenvalues of topological

origin can be identified in the spectrum and separated from the bulk modes, the ones not related to

topology.

3. Identification of the ZMZ above Tc

In this section, based on numerical evidence we argue that the accumulation of small Dirac

eigenvalues above Tc can indeed be connected to topology, and we also demonstrate that the ZMZ

can be clearly identified in the spectrum of the overlap Dirac operator. In Fig. 2 we show the

spectral density of the overlap operator on ensembles of quenched SU(3) gauge field configurations

on lattices of temporal size Nt = 6 and different spatial volumes. The temperature is T = 1.04Tc,

just above the transition, which in the quenched case, unlike in QCD with physical quarks, is
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Figure 2: The spectral density of the overlap Dirac operator in quenched gauge field backgrounds at

T = 1.04Tc. The temporal extension of the lattice is Nt = 6 and the different symbols correspond to spatial

linear extensions L = 24,32,40.

a genuine phase transition. The most striking feature of the spectral density is that instead of

smoothly and monotonically vanishing at λ = 0, it has a spike there. We emphasize that the spike

seen in the figure is solely due to near zero modes, as the exact zero modes have been removed

from the spectral density.

It is tempting to identify the spike with the zero mode zone, i.e. the mixing near zero modes

connected to fluctuations of the gauge field topological charge. How could this assumption be

checked? One possibility is to check whether the average number of eigenmodes in the spike and

their distribution are consistent with the fluctuations of the net topological charge, as given by the

topological susceptibility.

Since we computed overlap spectra on these configurations, we have the number of exact zero

modes, i.e. ni −na, the difference of the number of instantons and antiinstantons1 , configuration by

configuration. This in turn determines the topological charge Q and the topological susceptibility

as

χ =
1

V
〈Q2〉= 1

V
〈(ni −na)

2〉, (3.1)

where 〈.〉 denotes averaging with the path integral measure and V is the space-time volume. If the

eigenmodes in the spike of the spectral density are the ones corresponding to topological charge,

1Strictly speaking, at finite temperature the exact solutions of the Euclidean equations of motion for the gauge

field are calorons. Nevertheless, we will freely use the words instanton and caloron for approximate solutions at high

temperature.
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then their number nspike together with that of the exact zero modes is equal to the total number of

topological objects, i.e.

ni +na = nspike + |Q|. (3.2)

These numbers and their distributions are in principle independent and complicated variables,

determined by the dynamics of the system. However, they are all connected in a simple way if

topological objects occur statistically independently. Fortunately, at high temperature topological

fluctuation are suppressed, calorons are expected to form a dilute gas and the interaction among

topological objects becomes smaller. If the interaction is completely neglected then all the sta-

tistical properties of the distribution of topological objects are encoded in a single parameter, for

example the topological susceptibility χ . In this case it is easy to show that the distribution of

the number of instantons and antiinstantons in the gauge configurations are given by two indepen-

dent and identical Poisson distributions with expectation 1
2
V χ . It is also not hard to show that the

probabilities of the different charge sectors Q are given by

PQ = e−χV IQ(χV ), (3.3)

where IQ are the modified Bessel functions of order Q.

Figure 3: The probability of the different topological charge sectors obtained from overlap zero modes

on a set of 3800 323×6 lattice configurations at T = 1.04Tc (squares). Due to the expected symmetry, the

probabilities of the charge sectors Q and −Q were added. The circles show the expected probabilities in a

free instanton gas with the same topological susceptibility.

To test whether the caloron gas is non-interacting, in Fig. 3 we compare the numerically ob-

tained charge distribution with the distribution of Eq. (3.3) expected for free calorons. The parame-

ter χ of the latter distribution was set equal to the numerically obtained topological susceptibility, so
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the comparison effectively amounts to a one-parameter fit. Surprisingly, even at this relatively low

temperature, T = 1.04Tc, no significant discrepancy can be observed between the non-interacting

instanton model and the lattice data.

Encouraged by the good agreement of the lattice data and the free instanton gas description,

we can extend our study to the full zero mode zone, including also the near zero modes. Again,

based on the free instanton gas, it is easy to see that the distribution of ni + na is Poisson, with

expectation V χ . To be able to check this on the lattice data, we have to fix an additional parameter,

a cut in the spectrum, λzmz, below which eigenvalues are considered to belong to the zero mode

zone. The most natural way to fix λzmz is to require that

〈ni +na〉=V χ (3.4)

on the given ensemble of gauge configurations, where χ is again the topological susceptibility

obtained by counting zero modes. In a free instanton gas eq. (3.4) holds exactly and for a lattice

ensemble of configurations, by definition 〈ni +na〉 is the average number of eigenvalues with |λ |<
λzmz, including exact zero modes.

Figure 4: The occurrence of different numbers of topological objects (instantons plus antiinstantons)

obtained from overlap near zero modes on a set of 3800 323×6 lattice configurations at T = 1.04Tc (squares)

compared to the numbers expected for an ideal gas of calorons (circles). The cut for the counted near zero

modes was set to λ a = 0.092, consistently with the susceptibility, as explained in the text.

Fixing λzmz in this way, we compare the numerically obtained and the expected distribution

in Fig. 4, and we find good agreement again. The distributions for the two other spatial lattice

volumes, 243 and 403 look similar and neither of them shows any significant deviation from the

distributions expected in a free caloron gas. The values of λzmz determined on the three ensembles
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are consistent with one another and their combined average is λzmza = 0.09± 0.01. As a further

consistency check we can see in Fig. 2 that this point in the spectrum roughly coincides with the

minimum of the spectral density between the spike at zero and the bulk. This indicates that the

modes of topological origin can indeed be separated from the bulk of the spectrum. We also expect

this separation to become more pronounced in the continuum limit and also at higher temperatures.

Another interesting feature of the spectral density in Fig. 2 is that for very small values of

λ (most conspicuously in the first bin) there are unusually large corrections to the proper volume

scaling of the spectral density. However, as a more detailed analysis reveals, the total number of

topological modes scales properly with the volume. The discrepancy in the figure is caused by the

fact that the topological modes corresponding to the net charge occur exactly at zero, but the density

of these zero modes vanishes with 1/
√

V and they will not contribute to the spectral density in the

thermodynamic limit. However, at these volumes their contribution is still seen, resulting also in

significantly smaller spectral densities at the smallest λ values.

4. Conclusions

In the present paper we gave strong indications that in quenched QCD already a bit above Tc

the topology related near zero modes of the overlap Dirac operator can be separated from the bulk

of the spectrum. Counting these modes, as well as the exact zero modes configuration by con-

figuration, we found the resulting distributions to be consistent with the ones expected for a free

caloron gas. The present study was based on the quenched approximation, where the quark deter-

minant is neglected. However, the Dirac determinant with light quarks is expected to be sensitive

to small Dirac eigenvalues and through them also to topology which in turn could result in inter-

actions among topological objects. Therefore, the most interesting extension of this work would

be to repeat the study with the inclusion of light dynamical quarks. Unfortunately, the presence

or absence of quark induced interactions among topological objects could crucially depend on the

chiral properties of the Dirac operator, i.e. how well it can resolve zero and near zero modes. It

would also be interesting to see how these topological modes are related to the possible new phases

of QCD discussed in Ref. [6].
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